33 research outputs found

    Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in parkinson patients

    Get PDF
    Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced responsiveness to external stimuli in this disease and the effects of hyper-fluctuating cortical inputs to the striatum and STN in particular

    Inter- versus intramodal integration in sensorimotor synchronization: a combined behavioral and magnetoencephalographic study

    Get PDF
    Although the temporal occurrence of the pacing signal is predictable in sensorimotor synchronization tasks, normal subjects perform on-the-beat-tapping to an isochronous auditory metronome with an anticipatory error. This error originates from an intermodal task, that is, subjects have to bring information from the auditory and tactile modality to coincide. The aim of the present study was to illuminate whether the synchronization error is a finding specific to an intermodal timing task and whether the underlying cortical mechanisms are modality-specific or supramodal. We collected behavioral data and cortical evoked responses by magneto-encephalography (MEG) during performance of cross- and unimodal tapping-tasks. As expected, subjects showed negative asynchrony in performing an auditorily paced tapping task. However, no asynchrony emerged during tactile pacing, neither during pacing at the opposite finger nor at the toe. Analysis of cortical signals resulted in a three dipole model best explaining tap-contingent activity in all three conditions. The temporal behavior of the sources was similar between the conditions and, thus, modality independent. The localization of the two earlier activated sources was modality-independent as well whereas location of the third source varied with modality. In the auditory pacing condition it was localized in contralateral primary somatosensory cortex, during tactile pacing it was localized in contralateral posterior parietal cortex. In previous studies with auditory pacing the functional role of this third source was contradictory: A special temporal coupling pattern argued for involvement of the source in evaluating the temporal distance between tap and click whereas subsequent data gave no evidence for such an interpretation. Present data shed new light on this question by demonstrating differences between modalities in the localization of the third source with similar temporal behavior

    Hydrodynamic behaviour and biochemical characterization of a simple custom expanded bed column for protein purification

    Get PDF
    Hydrodynamic behaviour and biochemical characterization of a simple custom expanded bed column made by Nanobiotechnology Group (NBG) was compared with a commercial expanded bed contactor.Hydrodynamic characteristics of the columns (Daxl and Bo) with various settled bed height (SBH = 5 - 10cm, increment of 1 cm) along with variety of column diameters (1.0, 1.6, 2.0 and 2.5 cm) wereinvestigated. All parameters were found to be comparable or superior to those reported for conventional, expanded bed contactors. However, the experimental values of Richardson-Zaki coefficient determined here were close to the value of 4.8, commonly used in the laminar flow regime. The expansion coefficient and terminal velocity of the adsorbent (Streamline™ DEAE) were theoretically calculated based on correlation stated in the literature and also experimentally determined. Theadsorbent was also used in batch binding experiments, as well as in commercial and custom assembled expanded bed contactors with various feedstocks comprising bovine serum albumin and egg albumin. This evaluation exhibited good capacities and adsorption/desorption performance of NBG column in compare with commercial expanded bed column. The hydrodynamic behaviour of expanded bed adsorption and the generic application of simple NBG column and its potential for the purification and recovery of protein products are thoroughly discussed
    corecore