216 research outputs found

    The clinical utility of the continuous performance test and objective measures of activity for diagnosing and monitoring ADHD in children: a systematic review

    Get PDF
    Attention deficit hyperactivity disorder (ADHD) is typically diagnosed using clinical observation and subjective informant reports. Once children commence ADHD medication, robust monitoring is required to detect partial or non-responses. The extent to which neuropsychological continuous performance tests (CPTs) and objective measures of activity can clinically aid the assessment and titration process in ADHD is not fully understood. This review describes the current evidence base for the use of CPTs and objectively measured activity to support the diagnostic procedure and medication management for children with ADHD. Four databases (PsycINFO, Medline, Allied and Complementary Medicine (AMED) and PsycARTICLES) were systematically searched to understand the current evidence base for: (1) the use of CPTs to aid clinical assessment of ADHD; (2) the use of CPTs to aid medication management; (3) the clinical utility of objective measures of activity in ADHD. Sixty relevant articles were identified. The search revealed six commercially available CPTs that had been reported on for their clinical use. There were mixed findings with regard to the use of CPTs to assess and manage medication, with contrasting evidence on their ability to support clinical decision making. There was a strong evidence base for the use of objective measures of activity to aid ADHD/non-ADHD group differentiation, which appears sensitive to medication effects and would also benefit from further research on their clinical utility. The findings suggest that combining CPTs and an objective measure of activity may be particularly useful as a clinical tool and worthy of further pursuit

    A 160-kilobit molecular electronic memory patterned at 10^(11) bits per square centimetre

    Get PDF
    The primary metric for gauging progress in the various semiconductor integrated circuit technologies is the spacing, or pitch, between the most closely spaced wires within a dynamic random access memory (DRAM) circuit. Modern DRAM circuits have 140nm pitch wires and a memory cell size of 0.0408 μm^2. Improving integrated circuit technology will require that these dimensions decrease over time. However, at present a large fraction of the patterning and materials requirements that we expect to need for the construction of new integrated circuit technologies in 2013 have ‘no known solution’. Promising ingredients for advances in integrated circuit technology are nanowires, molecular electronics and defect-tolerant architectures, as demonstrated by reports of single devices and small circuits. Methods of extending these approaches to large-scale, high-density circuitry are largely undeveloped. Here we describe a 160,000-bit molecular electronic memory circuit, fabricated at a density of 10^(11) bits cm^(-2) (pitch 33 nm; memory cell size 0.0011 mm^2), that is, roughly analogous to the dimensions of a DRAM circuit projected to be available by 2020. A monolayer of bistable, [2]rotaxane molecules 10 served as the data storage elements. Although the circuit has large numbers of defects, those defects could be readily identified through electronic testing and isolated using software coding. The working bits were then configured to form a fully functional random access memory circuit for storing and retrieving information

    Implementation and evaluation of a nurse-centered computerized potassium regulation protocol in the intensive care unit - a before and after analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Potassium disorders can cause major complications and must be avoided in critically ill patients. Regulation of potassium in the intensive care unit (ICU) requires potassium administration with frequent blood potassium measurements and subsequent adjustments of the amount of potassium administrated. The use of a potassium replacement protocol can improve potassium regulation. For safety and efficiency, computerized protocols appear to be superior over paper protocols. The aim of this study was to evaluate if a computerized potassium regulation protocol in the ICU improved potassium regulation.</p> <p>Methods</p> <p>In our surgical ICU (12 beds) and cardiothoracic ICU (14 beds) at a tertiary academic center, we implemented a nurse-centered computerized potassium protocol integrated with the pre-existent glucose control program called GRIP (Glucose Regulation in Intensive Care patients). Before implementation of the computerized protocol, potassium replacement was physician-driven. Potassium was delivered continuously either by central venous catheter or by gastric, duodenal or jejunal tube. After every potassium measurement, nurses received a recommendation for the potassium administration rate and the time to the next measurement. In this before-after study we evaluated potassium regulation with GRIP. The attitude of the nursing staff towards potassium regulation with computer support was measured with questionnaires.</p> <p>Results</p> <p>The patient cohort consisted of 775 patients before and 1435 after the implementation of computerized potassium control. The number of patients with hypokalemia (<3.5 mmol/L) and hyperkalemia (>5.0 mmol/L) were recorded, as well as the time course of potassium levels after ICU admission. The incidence of hypokalemia and hyperkalemia was calculated. Median potassium-levels were similar in both study periods, but the level of potassium control improved: the incidence of hypokalemia decreased from 2.4% to 1.7% (P < 0.001) and hyperkalemia from 7.4% to 4.8% (P < 0.001). Nurses indicated that they considered computerized potassium control an improvement over previous practice.</p> <p>Conclusions</p> <p>Computerized potassium control, integrated with the nurse-centered GRIP program for glucose regulation, is effective and reduces the prevalence of hypo- and hyperkalemia in the ICU compared with physician-driven potassium regulation.</p

    Expression and Function of Androgen Receptor Coactivator p44/Mep50/WDR77 in Ovarian Cancer

    Get PDF
    Hormones, including estrogen and progesterone, and their receptors play an important role in the development and progression of ovarian carcinoma. Androgen, its receptor and coactivators have also been implicated in these processes. p44/Mep50/WDR77 was identified as a subunit of the methylosome complex and lately characterized as a steroid receptor coactivator that enhances androgen receptor as well as estrogen receptor-mediated transcriptional activity in a ligand-dependent manner. We previously described distinct expression and function of p44 in prostate, testis, and breast cancers. In this report, we examined the expression and function of p44 in ovarian cancer. In contrast to findings in prostate and testicular cancer and similar to breast cancer, p44 shows strong cytoplasmic localization in morphologically normal ovarian surface and fallopian tube epithelia, while nuclear p44 is observed in invasive ovarian carcinoma. We observed that p44 can serve as a coactivator of both androgen receptor (AR) and estrogen receptor (ER) in ovarian cells. Further, overexpression of nuclear-localized p44 stimulates proliferation and invasion in ovarian cancer cells in the presence of estrogen or androgen. These findings strongly suggest that p44 plays a role in mediating the effects of hormones during ovarian tumorigenesis

    Challenges to immunization: the experiences of homeless youth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Homelessness is a critical social issue, both a product of, and contributing to, poor mental and physical health. Over 150,000 young Canadians live on the streets. Homeless youth experience a high incidence of infectious diseases, many of which are vaccine preventable. Early departure from school and limited access to public health services makes them a particularly vulnerable high-risk group. This study explores challenges to obtaining essential vaccines experienced by homeless youth.</p> <p>Methods</p> <p>A qualitative research study to explore knowledge, attitudes, beliefs, and experiences surrounding immunization of hard-to-reach homeless youth was designed. Participants were recruited for focus groups from Phoenix House and Shelter, a non-profit, community-based organization assisting homeless youth in Halifax, Nova Scotia, Canada. An experienced facilitator guided the recorded discussions. Transcripts of audiotapes were analyzed using a constant comparative method until data revealed a set of exemplars and themes that best captured participants’ knowledge, attitudes, beliefs and experiences surrounding immunization and infectious diseases.</p> <p>Results</p> <p>Important themes emerged from our analysis. Considerable variability in knowledge about immunization and vaccine preventable diseases was found. The homeless youth in the study had limited awareness of meningitis in contrast to a greater knowledge about sexually transmitted infections and influenza, gained during the H1N1/09 public health campaign. They recognized their poverty as a risk for contracting infectious diseases, along with their inability to always employ known strategies to prevent infectious diseases, due to circumstances. They showed considerable insight into the detrimental effects of poor hygiene, sleeping locations and risk behaviour. Interviewed homeless youth regarded themselves as good compliers of health professional advice and offered valuable suggestions to improve immunization in their population.</p> <p>Conclusions</p> <p>To provide effective public health interventions, it is necessary to consider the knowledge, attitudes, beliefs, and experiences of hard to reach, high risk groups. Our study shows that homeless youth are interested and capable in discussing immunization. Active targeting of homeless youth for public health immunization programs is needed. Working collaboratively with non-profit organizations that assist homeless youth provides an opportunity to increase their knowledge of infectious risks and to improve immunization strategies in this vulnerable group.</p

    Hyponatremia revisited: Translating physiology to practice

    Get PDF
    The complexity of hyponatremia as a clinical problem is likely caused by the opposite scenarios that accompany this electrolyte disorder regarding pathophysiology (depletional versus dilutional hyponatremia, high versus low vasopressin levels) and therapy (rapid correction to treat cerebral edema versus slow correction to prevent osmotic demyelination, fluid restriction versus fluid resuscitation). For a balanced differentiation between these opposites, an understanding of the pathophysiology of hyponatremia is required. Therefore, in this review an attempt is made to translate the physiology of water balance regulation to strategies that improve the clinical management of hyponatremia. A physiology-based approach to the patient with hyponatremia is presented, first addressing the possibility of acute hyponatremia, and then asking if and if so why vasopressin is secreted non-osmotically. Additional diagnostic recommendations are not to rely too heavily of the assessment of the extracellular fluid volume, to regard the syndrome of inappropriate antidiuresis as a diagnosis of exclusion, and to rationally investigate the pathophysiology of hyponatremia rather than to rely on isolated laboratory values with arbitrary cutoff values. The features of the major hyponatremic disorders are discussed, including diuretic-induced hyponatremia, adrenal and pituitary insufficiency, the syndrome of inappropriate antidiuresis, cerebral salt wasting, and exercise-associated hyponatremia. The treatment of hyponatremia is reviewed from simple saline solutions to the recently introduced vasopressin receptor antagonists, including their promises and limitations. Given the persistently high rates of hospital-acquired hyponatremia, the importance of improving the management of hyponatremia seems both necessary and achievable. Copyrigh

    Protein docking prediction using predicted protein-protein interface

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations.</p> <p>Results</p> <p>We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm), is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering.</p> <p>Conclusion</p> <p>We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.</p

    Effects of methylphenidate on attention in Wistar rats treated with the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4)

    Get PDF
    The aim of this study was to assess the effects of the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) on attention in rats as measured using the 5-choice-serial-reaction-time task (5CSRTT) and to investigate whether methylphenidate has effects on DSP4-treated rats. Methylphenidate is a noradrenaline and dopamine reuptake inhibitor and commonly used in the pharmacological treatment of individuals with attention deficit/hyperactivity disorder (ADHD). Wistar rats were trained in the 5CSRTT and treated with one of three doses of DSP4 or saline. Following the DSP4 treatment rats were injected with three doses of methylphenidate or saline and again tested in the 5CSRTT. The treatment with DSP4 caused a significant decline of performance in the number of correct responses and a decrease in response accuracy. A reduction in activity could also be observed. Whether or not the cognitive impairments are due to attention deficits or changes in explorative behaviour or activity remains to be investigated. The treatment with methylphenidate had no beneficial effect on the rats’ performance regardless of the DSP4 treatment. In the group without DSP4 treatment, methylphenidate led to a reduction in response accuracy and bidirectional effects in regard to parameters related to attention. These findings support the role of noradrenaline in modulating attention and call for further investigations concerning the effects of methylphenidate on attentional processes in rats

    Catecholamine Storage Vesicles: Role of Core Protein Genetic Polymorphisms in Hypertension

    Get PDF
    Hypertension is a complex trait with deranged autonomic control of the circulation. The sympathoadrenal system exerts minute-to-minute control over cardiac output and vascular tone. Catecholamine storage vesicles (or chromaffin granules) of the adrenal medulla contain remarkably high concentrations of chromogranins/secretogranins (or “granins”), catecholamines, neuropeptide Y, adenosine triphosphate (ATP), and Ca2+. Within secretory granules, granins are co-stored with catecholamine neurotransmitters and co-released upon stimulation of the regulated secretory pathway. The principal granin family members, chromogranin A (CHGA), chromogranin B (CHGB), and secretogranin II (SCG2), may have evolved from shared ancestral exons by gene duplication. This article reviews human genetic variation at loci encoding the major granins and probes the effects of such polymorphisms on blood pressure, using twin pairs to probe heritability and individuals with the most extreme blood pressure values in the population to study hypertension
    corecore