174 research outputs found

    Advancing the global public health agenda for NAFLD: a consensus statement

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is a potentially serious liver disease that affects approximately one-quarter of the global adult population, causing a substantial burden of ill health with wide-ranging social and economic implications. It is a multisystem disease and is considered the hepatic component of metabolic syndrome. Unlike other highly prevalent conditions, NAFLD has received little attention from the global public health community. Health system and public health responses to NAFLD have been weak and fragmented, and, despite its pervasiveness, NAFLD is largely unknown outside hepatology and gastroenterology. There is only a nascent global public health movement addressing NAFLD, and the disease is absent from nearly all national and international strategies and policies for non-communicable diseases, including obesity. In this global Delphi study, a multidisciplinary group of experts developed consensus statements and recommendations, which a larger group of collaborators reviewed over three rounds until consensus was achieved. The resulting consensus statements and recommendations address a broad range of topics — from epidemiology, awareness, care and treatment to public health policies and leadership — that have general relevance for policy-makers, health-care practitioners, civil society groups, research institutions and affected populations. These recommendations should provide a strong foundation for a comprehensive public health response to NAFLD

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    Repertoire, Genealogy and Genomic Organization of Cruzipain and Homologous Genes in Trypanosoma cruzi, T. cruzi-Like and Other Trypanosome Species

    Get PDF
    Trypanosoma cruzi, the agent of Chagas disease, is a complex of genetically diverse isolates highly phylogenetically related to T. cruzi-like species, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, all sharing morphology of blood and culture forms and development within cells. However, they differ in hosts, vectors and pathogenicity: T. cruzi is a human pathogen infective to virtually all mammals whilst the other two species are non-pathogenic and bat restricted. Previous studies suggest that variations in expression levels and genetic diversity of cruzipain, the major isoform of cathepsin L-like (CATL) enzymes of T. cruzi, correlate with levels of cellular invasion, differentiation, virulence and pathogenicity of distinct strains. In this study, we compared 80 sequences of genes encoding cruzipain from 25 T. cruzi isolates representative of all discrete typing units (DTUs TcI-TcVI) and the new genotype Tcbat and 10 sequences of homologous genes from other species. The catalytic domain repertoires diverged according to DTUs and trypanosome species. Relatively homogeneous sequences are found within and among isolates of the same DTU except TcV and TcVI, which displayed sequences unique or identical to those of TcII and TcIII, supporting their origin from the hybridization between these two DTUs. In network genealogies, sequences from T. cruzi clustered tightly together and closer to T. c. marinkellei than to T. dionisii and largely differed from homologues of T. rangeli and T. b. brucei. Here, analysis of isolates representative of the overall biological and genetic diversity of T. cruzi and closest T. cruzi-like species evidenced DTU- and species-specific polymorphisms corroborating phylogenetic relationships inferred with other genes. Comparison of both phylogenetically close and distant trypanosomes is valuable to understand host-parasite interactions, virulence and pathogenicity. Our findings corroborate cruzipain as valuable target for drugs, vaccine, diagnostic and genotyping approaches

    Hepatic Fat Accumulation Is Modulated by the Interaction between the rs738409 Variant in the PNPLA3 Gene and the Dietary Omega6/Omega3 PUFA Intake

    Get PDF
    A single nucleotide polymorphism (SNP), the rs738409, in the patatin like phospholipase 3 gene (PNPLA3) has been recently associated with increased hepatic steatosis and ALT levels in adults and children. Given the potential role of PNPLA3 in fatty liver development, we aimed to explore whether the influence of PNPLA3 genotype on hepatic fat in obese youth might be modulated by dietary factors such as essential omega polyunsaturated fatty acids (PUFA) intake.We studied 127 children and adolescents (56 boys, 71 girls; 58 Caucasians; 30 African Americans and 39 Hispanics; mean age 14.7±3.3; mean BMI 30.7±7.2). The dietary composition was assessed by the Nutrition Data System for Research (NDS-R version 2011). The patients underwent a MRI study to assess the liver fat content (HFF%), ALT measurement and the genotyping of the rs738409 SNP by automatic sequencing.As previously observed, HFF% and ALT levels varied according to the genotype in each ethnicity. ALT levels and HFF% were significantly influenced by the interaction between genotype and omega-6/omega-3 PUFA ratio (n-6/n-3), p = 0.003 and p = 0.002, respectively. HFF% and ALT levels were, in fact, related to the n-6/n-3 consumption only in subjects homozygote for the G allele of the rs738409 (r2 = 0.45, p =  0.001 and r2 = 0.40, p = 0.006, respectively).These findings suggest that the association of a high dietary n-6/n-3 PUFA with fatty liver and liver damage in obese youths may be driven by a predisposing genotype

    The Role of Turtles as Coral Reef Macroherbivores

    Get PDF
    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood

    New Insight into the Antifibrotic Effects of Praziquantel on Mice in Infection with Schistosoma japonicum

    Get PDF
    Schistosomiasis is a parasitic disease infecting more than 200 million people in the world. Although chemotherapy targeting on killing schistosomes is one of the main strategies in the disease control, there are few effective ways of dealing with liver fibrosis caused by the parasite infection in the chronic and advanced stages of schistosomiasis. For this reason, new strategies and prospective drugs, which exert antifibrotic effects, are urgently required.-induced liver fibrosis was inhibited by PZQ treatment for 30 days. Furthermore, we analyzed the effects of praziquantel on mouse primary hepatic stellate cells (HSCs). It is indicated that mRNA expressions of Col1α1, Col3α1, α-SMA, TGF-β, MMP9 and TIMP1 of HSCs were all inhibited after praziquantel anti-parasite treatments.The significant amelioration of hepatic fibrosis by praziquantel treatment validates it as a promising drug of anti-fibrosis and offers potential of a new chemotherapy for hepatic fibrosis resulting from schistosomiasis

    Intermediate filament cytoskeleton of the liver in health and disease

    Get PDF
    Intermediate filaments (IFs) represent the largest cytoskeletal gene family comprising ~70 genes expressed in tissue specific manner. In addition to scaffolding function, they form complex signaling platforms and interact with various kinases, adaptor, and apoptotic proteins. IFs are established cytoprotectants and IF variants are associated with >30 human diseases. Furthermore, IF-containing inclusion bodies are characteristic features of several neurodegenerative, muscular, and other disorders. Acidic (type I) and basic keratins (type II) build obligatory type I and type II heteropolymers and are expressed in epithelial cells. Adult hepatocytes contain K8 and K18 as their only cytoplasmic IF pair, whereas cholangiocytes express K7 and K19 in addition. K8/K18-deficient animals exhibit a marked susceptibility to various toxic agents and Fas-induced apoptosis. In humans, K8/K18 variants predispose to development of end-stage liver disease and acute liver failure (ALF). K8/K18 variants also associate with development of liver fibrosis in patients with chronic hepatitis C. Mallory-Denk bodies (MDBs) are protein aggregates consisting of ubiquitinated K8/K18, chaperones and sequestosome1/p62 (p62) as their major constituents. MDBs are found in various liver diseases including alcoholic and non-alcoholic steatohepatitis and can be formed in mice by feeding hepatotoxic substances griseofulvin and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). MDBs also arise in cell culture after transfection with K8/K18, ubiquitin, and p62. Major factors that determine MDB formation in vivo are the type of stress (with oxidative stress as a major player), the extent of stress-induced protein misfolding and resulting chaperone, proteasome and autophagy overload, keratin 8 excess, transglutaminase activation with transamidation of keratin 8 and p62 upregulation
    corecore