36 research outputs found

    Burial Depth and Stolon Internode Length Independently Affect Survival of Small Clonal Fragments

    Get PDF
    Disturbance can fragment plant clones into different sizes and unstabilize soils to different degrees, so that clonal fragments of different sizes can be buried in soils at different depths. As a short-term storage organ, solon internode may help fragmented clones of stoloniferous plants to withstand deeper burial in soils. We address (1) whether burial in soils decreases survival and growth of small clonal fragments, and (2) whether increasing internode length increases survival and growth of small fragments under burial. We conducted an experiment with the stoloniferous, invasive herb Alternanthera philoxeroides, in which single-node fragments with stolon internode of 0, 2, 4 and 8 cm were buried in soils at 0, 2, 4 and 8 cm depth, respectively. Increasing burial depth significantly reduced survival of the A. philoxeroides plants and increased root to shoot ratio and total stolon length, but did not change growth measures. Increasing internode length significantly increased survival and growth measures, but there was no interaction effect with burial depth on any traits measured. These results indicate that reserves stored in stolon internodes can contribute to the fitness of the A. philoxeroides plants subject to disturbance. Although burial reduced the regeneration capacity of the A. philoxeroides plants, the species may maintain the fitness by changing biomass allocation and stolon length once it survived the burial. Such responses may play an important role for A. philoxeroides in establishment and invasiveness in frequently disturbed habitats

    Relations between assemblages of carpological remains and modern vegetation in a shallow reservoir in southern Poland

    Get PDF
    This paper explores relations between assemblages of carpological remains and vegetation in and around a small, shallow reservoir in southern Poland. The study was conducted from 2006 to 2008. Quantity and distribution of species in the reservoir were recorded annually during the growing season. In October 2008, 40 samples of surface sediment (top 2 cm) were collected along transects at 10 m intervals. Samples of 100 cm3 were prepared for analysis of plant macroremains. Assemblages of carpological remains generally reflect local vegetation well. In some cases, however, even analysis of numerous samples failed to fully capture the species composition or reflect plant ratios in the parent phytocenosis. Reasons for this include factors that affect seed production, transport and fossilization, which differ among species. Among the best-represented macroremains were plants of the rush phytocenosis. In analysed samples, macroremains of 68.8 % of extant rushes were identified. Sixty percent of submerged and floating-leaf taxa were found in carpological samples, whereas 26.7 % of the trees and bushes were represented in sediment deposits. Species composition of phytocenoses in the reservoir and in surrounding areas was best reflected by macroremains from the nearby reed bed. Numbers of diaspores of Mentha aquatica, Hippuris vulgaris and Carex reflected well their relative abundance in phytocenoses. Chara sp., Juncus inflexus and Eupatorium cannabinum were overrepresented, whereas Typha latifolia and Sparganium minimum were poorly represented in relation to contemporary plant cover. There were no diaspores of Phragmites australis, which dominates the contemporary reed bed. Besides the shape of a reservoir, the key factor influencing diaspore numbers is distribution of plant cover. In many cases, single diaspores (Potentilla erecta, Myosotis scorpioides, Lythrum salicaria, Scutellaria galericulata), or higher concentrations (Hippuris vulgaris, Mentha aquatica, Eleocharis palustris, Schoenoplectus tabernaemontani, Chara sp.) reflected well the location of parent vegetation. The findings indicate that carpological remains in sediments can be an important source of information about plants in and around lakes. They generally reflect well local vegetation and in some cases may be used to identify taxa that dominated in the past

    Water velocity limits the temporal extent of herbivore effects on aquatic plants in a lowland river

    Get PDF
    The role of herbivores in regulating aquatic plant dynamics has received growing recognition from researchers and managers. However, the evidence for herbivore impacts on aquatic plants is largely based on short-term exclosure studies conducted within a single plant growing season. Thus, it is unclear how long herbivore impacts on aquatic plant abundance can persist for. We addressed this knowledge gap by testing whether mute swan (Cygnus olor) grazing on lowland river macrophytes could be detected in the following growing season. Furthermore, we investigated the role of seasonal changes in water current speed in limiting the temporal extent of grazing. We found no relationship between swan biomass density in 1 year and aquatic plant cover or biomass in the following spring. No such carry-over effects were detected despite observing high swan biomass densities in the previous year from which we inferred grazing impacts on macrophytes. Seasonal increases in water velocity were associated with reduced grazing pressure as swans abandoned river habitat. Furthermore, our study highlights the role of seasonal changes in water velocity in determining the length of the mute swan grazing season in shallow lowland rivers and thus in limiting the temporal extent of herbivore impacts on aquatic plant abundance

    Above- and below-ground vertebrate herbivory may each favour a different subordinate species in an aquatic plant community

    Get PDF
    At least two distinct trade-offs are thought to facilitate higher diversity in productive plant communities under herbivory. Higher investment in defence and enhanced colonization potential may both correlate with decreased competitive ability in plants. Herbivory may thus promote coexistence of plant species exhibiting divergent life history strategies. How different seasonally tied herbivore assemblages simultaneously affect plant community composition and diversity is, however, largely unknown. Two contrasting types of herbivory can be distinguished in the aquatic vegetation of the shallow lake Lauwersmeer. In summer, predominantly above-ground tissues are eaten, whereas in winter, waterfowl forage on below-ground plant propagules. In a 4-year exclosure study we experimentally separated above-ground herbivory by waterfowl and large fish in summer from below-ground herbivory by Bewick’s swans in winter. We measured the individual and combined effects of both herbivory periods on the composition of the three-species aquatic plant community. Herbivory effect sizes varied considerably from year to year. In 2 years herbivore exclusion in summer reinforced dominance of Potamogeton pectinatus with a concomitant decrease in Potamogeton pusillus, whereas no strong, unequivocal effect was observed in the other 2 years. Winter exclusion, on the other hand, had a negative effect on Zannichellia palustris, but the effect size differed considerably between years. We suggest that the colonization ability of Z. palustris may have enabled this species to be more abundant after reduction of P. pectinatus tuber densities by swans. Evenness decreased due to herbivore exclusion in summer. We conclude that seasonally tied above- and below-ground herbivory may each stimulate different components of a macrophyte community as they each favoured a different subordinate plant species

    Algal mats transport diaspores and carpological remains in shallow lakes

    Get PDF
    Algal mats in lakes and reservoirs can transport diaspores and carpological remains of plants, and thus may influence the creation of taphocoenoses. In 2012, I quantified carpological remains in two types of algal mats from a small reservoir in southern Poland. Mats formed by filamentous algae participate primarily in the original transport of diaspores, and can influence their concentration and facilitate their migration, mainly between the shores of the reservoir. Diatom mats partake primarily in diaspore redeposition, but can also cause their dispersal between the shore zone and the central part of the reservoir. This research demonstrates that mats built by diatoms contain far more remains and are more biologically diverse than filamentous algal mats. Movement of carpological remains observed in both types of algal mats points to their role in the formation of taphocoenoses and suggests that algal mats must be considered when interpreting macrofossil records
    corecore