1,019 research outputs found

    Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors

    Get PDF
    We report on fabrication and electrical characteristics of high-mobility field-effect transistors (FETs) using ZnO nanorods. For FET fabrications, single-crystal ZnO nanorods were prepared using catalyst-free metalorganic vapor phase epitaxy. Although typical ZnO nanorod FETs exhibited good electrical characteristics, with a transconductance of similar to140 nS and a mobility of 75 cm(2)/V s, the device characteristics were significantly improved by coating a polyimide thin layer on the nanorod surface, exhibiting a large turn-ON/OFF ratio of 10(4)-10(5), a high transconductance of 1.9 muS, and high electron mobility above 1000 cm(2)/V s. The role of the polymer coating in the enhancement of the devices is also discussed. (C) 2004 American Institute of Physics.X11333sciescopu

    Effects of Structural Congestion and Surrounding Obstacles on the Overpressure Loads in Explosions: Experiment and CFD Simulations

    Get PDF
    An experimental and numerical study was undertaken to identify the characteristics of overpressure loads in offshore platform models subject to hydrocarbon explosions, with a focus on the structural congestion and surrounding obstacles. A large-scale (one-half) test model of a FLNG (liquefied natural gas floating production storage and offloading unit) topside structure was used for the experiment. Computational fluid dynamics (CFD) were used to calculate the overpressure loads in explosions with varying degrees of structural congestion. The overpressure loads tended to be more significant with the increase in structural congestion because the ventilation of exploded gas was retarded due to the obstacles presented by congested structural elements. Also, the overpressure loads with the surrounding structures are much larger than those without them. Details about the test database are documented to provide a useful reference for other researchers to validate numerical and theoretical methods

    The clock genes Period 2 and Cryptochrome 2 differentially balance bone formation

    Get PDF
    Background: Clock genes and their protein products regulate circadian rhythms in mammals but have also been implicated in various physiological processes, including bone formation. Osteoblasts build new mineralized bone whereas osteoclasts degrade it thereby balancing bone formation. To evaluate the contribution of clock components in this process, we investigated mice mutant in clock genes for a bone volume phenotype. Methodology/Principal Findings: We found that Per2Brdm1 mutant mice as well as mice lacking Cry2-/- displayed significantly increased bone volume at 12 weeks of age, when bone turnover is high. Per2Brdm1 mutant mice showed alterations in parameters specific for osteoblasts whereas mice lacking Cry2-/- displayed changes in osteoclast specific parameters. Interestingly, inactivation of both Per2 and Cry2 genes leads to normal bone volume as observed in wild type animals. Importantly, osteoclast parameters affected due to the lack of Cry2, remained at the level seen in the Cry2-/- mutants despite the simultaneous inactivation of Per2. Conclusions/Significance: This indicates that Cry2 and Per2 affect distinct pathways in the regulation of bone volume with Cry2 influencing mostly the osteoclastic cellular component of bone and Per2 acting on osteoblast parameters

    A commensal symbiotic interrelationship for the growth of Symbiobacterium toebii with its partner bacterium, Geobacillus toebii

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Symbiobacterium toebii </it>is a commensal symbiotic thermophile that absolutely requires its partner bacterium <it>Geobacillus toebii </it>for growth. Despite development of an independent cultivation method using cell-free extracts, the growth of <it>Symbiobacterium </it>remains unknown due to our poor understanding of the symbiotic relationship with its partner bacterium. Here, we investigated the interrelationship between these two bacteria for growth of <it>S. toebii </it>using different cell-free extracts of <it>G. toebii</it>.</p> <p>Results</p> <p><it>Symbiobacterium toebii </it>growth-supporting factors were constitutively produced through almost all growth phases and under different oxygen tensions in <it>G. toebii</it>, indicating that the factor may be essential components for growth of <it>G. toebii </it>as well as <it>S. toebii</it>. The growing conditions of <it>G. toebii </it>under different oxygen tension dramatically affected to the initial growth of <it>S. toebii </it>and the retarded lag phase was completely shortened by reducing agent, L-cysteine indicating an evidence of commensal interaction of microaerobic and anaerobic bacterium <it>S. toebii </it>with a facultative aerobic bacterium <it>G. toebii</it>. In addition, the growth curve of <it>S. toebii </it>showed a dependency on the protein concentration of cell-free extracts of <it>G. toebii</it>, demonstrating that the <it>G. toebii</it>-derived factors have nutrient-like characters but not quorum-sensing characters.</p> <p>Conclusions</p> <p>Not only the consistent existence of the factor in <it>G. toebii </it>during all growth stages and under different oxygen tensions but also the concentration dependency of the factor for proliferation and optimal growth of <it>S. toebii</it>, suggests that an important biosynthetic machinery lacks in <it>S. toebii </it>during evolution. The commensal symbiotic bacterium, <it>S. toebii </it>uptakes certain ubiquitous and essential compound for its growth from environment or neighboring bacteria that shares the equivalent compounds. Moreover, <it>G. toebii </it>grown under aerobic condition shortened the lag phase of <it>S. toebii </it>under anaerobic and microaerobic conditions, suggests a possible commensal interaction that <it>G. toebii </it>scavengers ROS/RNS species and helps the initial growth of <it>S. toebii</it>.</p

    DNA resection in eukaryotes: deciding how to fix the break

    Get PDF
    DNA double-strand breaks are repaired by different mechanisms, including homologous recombination and nonhomologous end-joining. DNA-end resection, the first step in recombination, is a key step that contributes to the choice of DSB repair. Resection, an evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint activation and is critical for survival. Failure to regulate and execute this process results in defective recombination and can contribute to human disease. Here, I review recent findings on the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the regulatory strategies that control it, and highlight the consequences of both its impairment and its deregulation

    Correlation between Discharged Worms and Fecal Egg Counts in Human Clonorchiasis

    Get PDF
    Clonorchiasis is a major neglected disease in East Asia. Worm data in infected humans are very limited, and only egg counts roughly estimate infection burden of the worms. In endemic areas, we recruited infected cases and tried to collect the adult worms from them. They were treated with 3 doses of praziquantel, and purged next day under fasting. Adult worms of C. sinensis were recovered from their diarrheal feces. The worms discharged from humans after treatment are minimum confirmed numbers. The worm recovery rate noticeably increased in subjects with higher egg counts. The number of collected worms was well-correlated with the egg counts. Worm collection by praziquantel medication and purgation is a safe non-invasive method to get worm information from human. The present study confirms that at least 110 worms are infected in a human body with egg counts per gram of feces around 3,000, and egg productivity of a worm per day is around 4,000

    Heritability estimates of the Big Five personality traits based on common genetic variants

    Get PDF
    According to twin studies, the Big Five personality traits have substantial heritable components explaining 40–60% of the variance, but identification of associated genetic variants has remained elusive. Consequently, knowledge regarding the molecular genetic architecture of personality and to what extent it is shared across the different personality traits is limited. Using genomic-relatedness-matrix residual maximum likelihood analysis (GREML), we here estimated the heritability of the Big Five personality factors (extraversion, agreeableness, conscientiousness, neuroticism and openness for experience) in a sample of 5011 European adults from 527 469 single-nucleotide polymorphisms across the genome. We tested for the heritability of each personality trait, as well as for the genetic overlap between the personality factors. We found significant and substantial heritability estimates for neuroticism (15%, s.e.=0.08, P=0.04) and openness (21%, s.e.=0.08, P<0.01), but not for extraversion, agreeableness and conscientiousness. The bivariate analyses showed that the variance explained by common variants entirely overlapped between neuroticism and openness (rG=1.00, P <0.001), despite low phenotypic correlation (r=−0.09, P <0.001), suggesting that the remaining unique heritability may be determined by rare or structural variants. As far as we are aware of, this is the first study estimating the shared and unique heritability of all Big Five personality traits using the GREML approach. Findings should be considered exploratory and suggest that detectable heritability estimates based on common variants is shared between neuroticism and openness to experiences

    One-year efficacy and safety of everolimus-eluting bioresorbable scaffolds in the setting of acute myocardial infarction.

    Get PDF
    BACKGROUND AND OBJECTIVES: This study sought to compare clinical outcomes between bioresorbable scaffolds (BRS) and durable polymer everolimus-eluting metallic stents (DP-EES) in patients with acute myocardial infarction (AMI) undergoing successful percutaneous coronary intervention (PCI). METHODS: From March 2016 to October 2017, 952 patients with AMI without cardiogenic shock undergoing successful PCI with BRS (n = 136) or DP-EES (n = 816) were enrolled from a multicenter, observational Korea Acute Myocardial Infarction Registry. RESULTS: In the crude population, there was no significant difference in the 1-year rate of device-oriented composite endpoint (DOCE) and device thrombosis between the BRS and DP-EES groups (2.2% vs. 4.8%, hazard ratio [HR] 0.43, 95% confidence interval [CI] 0.13-1.41, p = 0.163; 0.7% vs. 0.5%, HR 1.49, 95% CI 0.16-13.4, p = 0.719, respectively). BRS implantation was opted in younger patients (53.7 vs. 62.6 years, p < 0.001) with low-risk profiles, and intravascular image-guided PCI was more preferred in the BRS group (60.3% vs. 27.2%, p < 0.001). CONCLUSIONS: At 1-year follow-up, no differences in the rate of DOCE and device thrombosis were observed between patients with AMI treated with BRS and those treated with DP-EES. Our data suggest that imaging-guided BRS implantation in young patients with low risk profiles could be a reasonable strategy in the setting of AMI
    corecore