441 research outputs found

    Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems.

    Get PDF
    Arbuscular mycorrhizal fungi (AMF) occur in the roots of most plants and are an ecologically important component of the soil microbiome. Richness of AMF taxa is a strong driver of plant diversity and productivity, thus providing a rationale for characterizing AMF diversity in natural ecosystems. Consequently, a large number of molecular studies on AMF community composition are currently underway. Most published studies, at best, only address species or genera-level resolution. However, several experimental studies indicate that variation in plant performance is large among plants colonised by different individuals of one AMF species. Thus, there is a potential disparity between how molecular community ecologists are currently describing AMF diversity and the level of AMF diversity that may actually be ecologically relevant. We propose a strategy to find many polymorphic loci that can define within-species genetic variability within AMF, or at any level of resolution desired within the Glomermycota. We propose that allele diversity at the intraspecific level could then be measured for target AMF groups, or at other levels of resolution, in environmental DNA samples. Combining the use of such markers with experimental studies on AMF diversity would help to elucidate the most important level(s) of AMF diversity in plant communities. Our goal is to encourage ecologists who are trying to explain how mycorrhizal fungal communities are structured to take an approach that could also yield meaningful information that is relevant to the diversity, functioning and productivity of ecosystems

    Can Arbuscular Mycorrhizal Fungi Reduce the Growth of Agricultural Weeds?

    Get PDF
    BACKGROUND: Arbuscular mycorrhizal fungi (AMF) are known for their beneficial effects on plants. However, there is increasing evidence that some ruderal plants, including several agricultural weeds, respond negatively to AMF colonization. Here, we investigated the effect of AMF on the growth of individual weed species and on weed-crop interactions. METHODOLOGY/PRINCIPAL FINDINGS: First, under controlled glasshouse conditions, we screened growth responses of nine weed species and three crops to a widespread AMF, Glomus intraradices. None of the weeds screened showed a significant positive mycorrhizal growth response and four weed species were significantly reduced by the AMF (growth responses between -22 and -35%). In a subsequent experiment, we selected three of the negatively responding weed species--Echinochloa crus-galli, Setaria viridis and Solanum nigrum--and analyzed their responses to a combination of three AMF (Glomus intraradices, Glomus mosseae and Glomus claroideum). Finally, we tested whether the presence of a crop (maize) enhanced the suppressive effect of AMF on weeds. We found that the growth of the three selected weed species was also reduced by a combination of AMF and that the presence of maize amplified the negative effect of AMF on the growth of E. crus-galli. CONCLUSIONS/SIGNIFICANCE: Our results show that AMF can negatively influence the growth of some weed species indicating that AMF have the potential to act as determinants of weed community structure. Furthermore, mycorrhizal weed growth reductions can be amplified in the presence of a crop. Previous studies have shown that AMF provide a number of beneficial ecosystem services. Taken together with our current results, the maintenance and promotion of AMF activity may thereby contribute to sustainable management of agroecosystems. However, in order to further the practical and ecological relevance of our findings, additional experiments should be performed under field conditions

    Conservation tillage and organic farming induce minor variations in Pseudomonas abundance, their antimicrobial function and soil disease resistance.

    Get PDF
    Conservation tillage and organic farming are strategies used worldwide to preserve the stability and fertility of soils. While positive effects on soil structure have been extensively reported, the effects on specific root- and soil-associated microorganisms are less known. The aim of this study was to investigate how conservation tillage and organic farming influence the frequency and activity of plant-beneficial pseudomonads. Amplicon sequencing using the 16S rRNA gene revealed that Pseudomonas is among the most abundant bacterial taxa in the root microbiome of field-grown wheat, independent of agronomical practices. However, pseudomonads carrying genes required for the biosynthesis of specific antimicrobial compounds were enriched in samples from conventionally farmed plots without tillage. In contrast, disease resistance tests indicated that soil from conventional no tillage plots is less resistant to the soilborne pathogen Pythium ultimum compared to soil from organic reduced tillage plots, which exhibited the highest resistance of all compared cropping systems. Reporter strain-based gene expression assays did not reveal any differences in Pseudomonas antimicrobial gene expression between soils from different cropping systems. Our results suggest that plant-beneficial pseudomonads can be favoured by certain soil cropping systems, but soil resistance against plant diseases is likely determined by a multitude of biotic factors in addition to Pseudomonas

    Evidence for Enhanced Mutualism Hypothesis: Solidago canadensis Plants from Regular Soils Perform Better

    Get PDF
    The important roles of plant-soil microbe interactions have been documented in exotic plant invasion, but we know very little about how soil mutualists enhance this process (i.e. enhanced mutualism hypothesis). To test this hypothesis we conducted two greenhouse experiments with Solidago canadensis (hereafter Solidago), an invasive forb from North America, and Stipa bungeana (hereafter Stipa), a native Chinese grass. In a germination experiment, we found soil microbes from the rhizospheres of Solidago and Stipa exhibited much stronger facilitative effects on emergence of Solidago than that of Stipa. In a growth and competition experiment, we found that soil microbes strongly facilitated Solidago to outgrow Stipa, and greatly increased the competitive effects of Solidago on Stipa but decreased the competitive effects of Stipa on Solidago. These findings from two experiments suggest that in situ soil microbes enhance the recruitment potential of Solidago and its ability to outcompete native plants, thereby providing strong evidence for the enhanced mutualism hypothesis. On the other hand, to some extent this outperformance of Solidago in the presence of soil microbes seems to be unbeneficial to control its rapid expansion, particularly in some ranges where this enhanced mutualism dominates over other mechanisms

    The role of community and population ecology in applying mycorrhizal fungi for improved food security.

    Get PDF
    The global human population is expected to reach ∼9 billion by 2050. Feeding this many people represents a major challenge requiring global crop yield increases of up to 100%. Microbial symbionts of plants such as arbuscular mycorrhizal fungi (AMF) represent a huge, but unrealized resource for improving yields of globally important crops, especially in the tropics. We argue that the application of AMF in agriculture is too simplistic and ignores basic ecological principals. To achieve this challenge, a community and population ecology approach can contribute greatly. First, ecologists could significantly improve our understanding of the determinants of the survival of introduced AMF, the role of adaptability and intraspecific diversity of AMF and whether inoculation has a direct or indirect effect on plant production. Second, we call for extensive metagenomics as well as population genomics studies that are crucial to assess the environmental impact that introduction of non-local AMF may have on native AMF communities and populations. Finally, we plead for an ecologically sound use of AMF in efforts to increase food security at a global scale in a sustainable manner

    Epiparasitic plants specialized on arbuscular mycorrhizal fungi

    Get PDF
    Over 400 non-photosynthetic species from 10 families of vascular plants obtain their carbon from fungi and are thus defined as myco-heterotrophs. Many of these plants are epiparasitic on green plants from which they obtain carbon by 'cheating' shared mycorrhizal fungi. Epiparasitic plants examined to date depend on ectomycorrhizal fungi for carbon transfer and exhibit exceptional specificity for these fungi, but for most myco-heterotrophs neither the identity of the fungi nor the sources of their carbon are known. Because many myco-heterotrophs grow in forests dominated by plants associated with arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), we proposed that epiparasitism would occur also between plants linked by AMF. On a global scale AMF form the most widespread mycorrhizae, thus the ability of plants to cheat this symbiosis would be highly significant. We analysed mycorrhizae from three populations of Arachnitis uniflora (Corsiaceae, Monocotyledonae), five Voyria species and one Voyriella species (Gentianaceae, Dicotyledonae), and neighbouring green plants. Here we show that non-photosynthetic plants associate with AMF and can display the characteristic specificity of epiparasites. This suggests that AMF mediate significant inter-plant carbon transfer in nature

    Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest

    Get PDF
    Understanding the interactions among microbial communities, plant communities and soil properties following deforestation could provide insights into the long-term effects of land-use change on ecosystem functions, and may help identify approaches that promote the recovery of degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding of plant roots to estimate fungal and plant community composition in soil sampled across a chronosequence of deforestation. We found significant effects of land-use change on fungal community composition, which was more closely correlated to plant community composition than to changes in soil properties or geographic distance, providing evidence for strong links between above- and below-ground communities in tropical forests. © 2014 International Society for Microbial Ecology All rights reserved

    Interplant Communication of Tomato Plants through Underground Common Mycorrhizal Networks

    Get PDF
    Plants can defend themselves to pathogen and herbivore attack by responding to chemical signals that are emitted by attacked plants. It is well established that such signals can be transferred through the air. In theory, plants can also communicate with each other through underground common mycorrhizal networks (CMNs) that interconnect roots of multiple plants. However, until now research focused on plant-to-plant carbon nutrient movement and there is no evidence that defense signals can be exchanged through such mycorrhizal hyphal networks. Here, we show that CMNs mediate plant-plant communication between healthy plants and pathogen-infected tomato plants (Lycopersicon esculentum Mill.). After establishment of CMNs with the arbuscular mycorrhizal fungus Glomus mosseae between tomato plants, inoculation of ‘donor’ plants with the pathogen Alternaria solani led to increases in disease resistance and activities of the putative defensive enzymes, peroxidase, polyphenol oxidase, chitinase, β-1,3-glucanase, phenylalanine ammonia-lyase and lipoxygenase in healthy neighbouring ‘receiver’ plants. The uninfected ‘receiver’ plants also activated six defence-related genes when CMNs connected ‘donor’ plants challenged with A. solani. This finding indicates that CMNs may function as a plant-plant underground communication conduit whereby disease resistance and induced defence signals can be transferred between the healthy and pathogen-infected neighbouring plants, suggesting that plants can ‘eavesdrop’ on defence signals from the pathogen-challenged neighbours through CMNs to activate defences before being attacked themselves

    Mycorrhizal fungi suppress aggressive Agricultural weeds.

    Get PDF
    Plant growth responses to arbuscular mycorrhizal fungi (AMF) are highly variable, ranging from mutualism in a wide range of plants, to antagonism in some non-mycorrhizal plant species and plants characteristic of disturbed environments. Many agricultural weeds are non mycorrhizal or originate from ruderal environments where AMF are rare or absent. This led us to hypothesize that AMF may suppress weed growth, a mycorrhizal attribute which has hardly been considered. We investigated the impact of AMF and AMF diversity (three versus one AMF taxon) on weed growth in experimental microcosms where a crop (sunflower) was grown together with six widespread weed species. The presence of AMF reduced total weed biomass with 47% in microcosms where weeds were grown together with sunflower and with 25% in microcosms where weeds were grown alone. The biomass of two out of six weed species was significantly reduced by AMF (-66% & -59%) while the biomass of the four remaining weed species was only slightly reduced (-20% to -37%). Sunflower productivity was not influenced by AMF or AMF diversity. However, sunflower benefitted from AMF via enhanced phosphorus nutrition. The results indicate that the stimulation of arbuscular mycorrhizal fungi in agro-ecosystems may suppress some aggressive weeds
    corecore