82 research outputs found

    Hemodynamic impact of isobaric levobupivacaine versus hyperbaric bupivacaine for subarachnoid anesthesia in patients aged 65 and older undergoing hip surgery

    Get PDF
    BackgroundThe altered hemodynamics, and therefore the arterial hypotension is the most prevalent adverse effect after subarachnoid anesthesia. The objective of the study was to determine the exact role of local anesthetic selection underlying spinal anesthesia-induced hypotension in the elderly patient. We conducted a descriptive, observational pilot study to assess the hemodynamic impact of subarachnoid anesthesia with isobaric levobupivacaine versus hyperbaric bupivacaine for hip fracture surgery.DescriptionHundred twenty ASA status I-IV patients aged 65 and older undergoing hip fracture surgery were enrolled. The primary objective of our study was to compare hemodynamic effects based on systolic blood pressure (SBP) and dyastolic blood pressure (DBP) values, heart rate (HR) and hemoglobin (Hb) and respiratory effects based on partial oxygen saturation (SpO2%) values. The secondary objective was to assess potential adverse events with the use of levobupivacaine versus bupivacaine. Assessments were performed preoperatively, at 30 minutes into surgery, at the end of anesthesia and at 48 hours and 6 months after surgery.Among intraoperative events, the incidence of hypotension was statistically significantly higher (p <0.05) in group BUPI (38.3%) compared to group LEVO (13.3%). There was a decrease (p <0.05) in systolic blood pressure (SBP) and diastolic blood pressure (DBP) at 30 minutes intraoperatively (19% in group BUPI versus 17% in group LEVO). SpO2% increased at 30 minutes after anesthesia onset (1% in group BUPI versus 1.5% in group LEVO). Heart rate (HR) decreased at 30 minutes after anesthesia onset (5% in group BUPI versus 9% in group L). Hemoglobin (Hb) decreased from time of operating room (OR) admission to the end of anesthesia (9.3% in group BUPI versus 12.5% in group LEVO). The incidence of red blood cell (RBC) transfusion was 13.3% in group BUPI versus 31.7% in group LEVO, this difference was statistically significant. Among postoperative events, the incidence of congestive heart failure (CHF) was significantly higher in group BUPI (8,3%). At 6 months after anesthesia, no differences were found.ConclusionsGiven the hemodynamic stability and lower incidence of intraoperative hypotension observed, levobupivacaine could be the agent of choice for subarachnoid anesthesia in elderly patients

    Responsiveness of genes to manipulation of transcription factors in ES cells is associated with histone modifications and tissue specificity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In addition to determining static states of gene expression (high vs. low), it is important to characterize their dynamic status. For example, genes with H3K27me3 chromatin marks are not only suppressed but also poised for activation. However, the responsiveness of genes to perturbations has never been studied systematically. To distinguish gene responses to specific factors from responsiveness in general, it is necessary to analyze gene expression profiles of cells responding to a large variety of disturbances, and such databases did not exist before.</p> <p>Results</p> <p>We estimated the responsiveness of all genes in mouse ES cells using our recently published database on expression change after controlled induction of 53 transcription factors (TFs) and other genes. Responsive genes (<it>N </it>= 4746), which were readily upregulated or downregulated depending on the kind of perturbation, mostly have regulatory functions and a propensity to become tissue-specific upon differentiation. Tissue-specific expression was evaluated on the basis of published (GNF) and our new data for 15 organs and tissues. Non-responsive genes (<it>N </it>= 9562), which did not change their expression much following any perturbation, were enriched in housekeeping functions. We found that TF-responsiveness in ES cells is the best predictor known for tissue-specificity in gene expression. Among genes with CpG islands, high responsiveness is associated with H3K27me3 chromatin marks, and low responsiveness is associated with H3K36me3 chromatin, stronger tri-methylation of H3K4, binding of E2F1, and GABP binding motifs in promoters.</p> <p>Conclusions</p> <p>We thus propose the responsiveness of expression to perturbations as a new way to define the dynamic status of genes, which brings new insights into mechanisms of regulation of gene expression and tissue specificity.</p

    Discovery and Annotation of Functional Chromatin Signatures in the Human Genome

    Get PDF
    Transcriptional regulation in human cells is a complex process involving a multitude of regulatory elements encoded by the genome. Recent studies have shown that distinct chromatin signatures mark a variety of functional genomic elements and that subtle variations of these signatures mark elements with different functions. To identify novel chromatin signatures in the human genome, we apply a de novo pattern-finding algorithm to genome-wide maps of histone modifications. We recover previously known chromatin signatures associated with promoters and enhancers. We also observe several chromatin signatures with strong enrichment of H3K36me3 marking exons. Closer examination reveals that H3K36me3 is found on well-positioned nucleosomes at exon 5′ ends, and that this modification is a global mark of exon expression that also correlates with alternative splicing. Additionally, we observe strong enrichment of H2BK5me1 and H4K20me1 at highly expressed exons near the 5′ end, in contrast to the opposite distribution of H3K36me3-marked exons. Finally, we also recover frequently occurring chromatin signatures displaying enrichment of repressive histone modifications. These signatures mark distinct repeat sequences and are associated with distinct modes of gene repression. Together, these results highlight the rich information embedded in the human epigenome and underscore its value in studying gene regulation

    Analysis of Common and Specific Mechanisms of Liver Function Affected by Nitrotoluene Compounds

    Get PDF
    BACKGROUND: Nitrotoluenes are widely used chemical manufacturing and munitions applications. This group of chemicals has been shown to cause a range of effects from anemia and hypercholesterolemia to testicular atrophy. We have examined the molecular and functional effects of five different, but structurally related, nitrotoluenes on using an integrative systems biology approach to gain insight into common and disparate mechanisms underlying effects caused by these chemicals. METHODOLOGY/PRINCIPAL FINDINGS: Sprague-Dawley female rats were exposed via gavage to one of five concentrations of one of five nitrotoluenes [2,4,6-trinitrotoluene (TNT), 2-amino-4,6-dinitrotoluene (2ADNT) 4-amino-2,6-dinitrotoulene (4ADNT), 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT)] with necropsy and tissue collection at 24 or 48 h. Gene expression profile results correlated well with clinical data and liver histopathology that lead to the concept that hematotoxicity was followed by hepatotoxicity. Overall, 2,4DNT, 2,6DNT and TNT had stronger effects than 2ADNT and 4ADNT. Common functional terms, gene expression patterns, pathways and networks were regulated across all nitrotoluenes. These pathways included NRF2-mediated oxidative stress response, aryl hydrocarbon receptor signaling, LPS/IL-1 mediated inhibition of RXR function, xenobiotic metabolism signaling and metabolism of xenobiotics by cytochrome P450. One biological process common to all compounds, lipid metabolism, was found to be impacted both at the transcriptional and lipid production level. CONCLUSIONS/SIGNIFICANCE: A systems biology strategy was used to identify biochemical pathways affected by five nitroaromatic compounds and to integrate data that tie biochemical alterations to pathological changes. An integrative graphical network model was constructed by combining genomic, gene pathway, lipidomic, and physiological endpoint results to better understand mechanisms of liver toxicity and physiological endpoints affected by these compounds

    CHD7 Targets Active Gene Enhancer Elements to Modulate ES Cell-Specific Gene Expression

    Get PDF
    CHD7 is one of nine members of the chromodomain helicase DNA–binding domain family of ATP–dependent chromatin remodeling enzymes found in mammalian cells. De novo mutation of CHD7 is a major cause of CHARGE syndrome, a genetic condition characterized by multiple congenital anomalies. To gain insights to the function of CHD7, we used the technique of chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP–Seq) to map CHD7 sites in mouse ES cells. We identified 10,483 sites on chromatin bound by CHD7 at high confidence. Most of the CHD7 sites show features of gene enhancer elements. Specifically, CHD7 sites are predominantly located distal to transcription start sites, contain high levels of H3K4 mono-methylation, found within open chromatin that is hypersensitive to DNase I digestion, and correlate with ES cell-specific gene expression. Moreover, CHD7 co-localizes with P300, a known enhancer-binding protein and strong predictor of enhancer activity. Correlations with 18 other factors mapped by ChIP–seq in mouse ES cells indicate that CHD7 also co-localizes with ES cell master regulators OCT4, SOX2, and NANOG. Correlations between CHD7 sites and global gene expression profiles obtained from Chd7+/+, Chd7+/−, and Chd7−/− ES cells indicate that CHD7 functions at enhancers as a transcriptional rheostat to modulate, or fine-tune the expression levels of ES–specific genes. CHD7 can modulate genes in either the positive or negative direction, although negative regulation appears to be the more direct effect of CHD7 binding. These data indicate that enhancer-binding proteins can limit gene expression and are not necessarily co-activators. Although ES cells are not likely to be affected in CHARGE syndrome, we propose that enhancer-mediated gene dysregulation contributes to disease pathogenesis and that the critical CHD7 target genes may be subject to positive or negative regulation

    Correlates of Cooperation in a One-Shot High-Stakes Televised Prisoners' Dilemma

    Get PDF
    Explaining cooperation between non-relatives is a puzzle for both evolutionary biology and the social sciences. In humans, cooperation is often studied in a laboratory setting using economic games such as the prisoners' dilemma. However, such experiments are sometimes criticized for being played for low stakes and by misrepresentative student samples. Golden balls is a televised game show that uses the prisoners' dilemma, with a diverse range of participants, often playing for very large stakes. We use this non-experimental dataset to investigate the factors that influence cooperation when “playing” for considerably larger stakes than found in economic experiments. The game show has earlier stages that allow for an analysis of lying and voting decisions. We found that contestants were sensitive to the stakes involved, cooperating less when the stakes were larger in both absolute and relative terms. We also found that older contestants were more likely to cooperate, that liars received less cooperative behavior, but only if they told a certain type of lie, and that physical contact was associated with reduced cooperation, whereas laughter and promises were reliable signals or cues of cooperation, but were not necessarily detected

    Promoter Complexity and Tissue-Specific Expression of Stress Response Components in Mytilus galloprovincialis, a Sessile Marine Invertebrate Species

    Get PDF
    The mechanisms of stress tolerance in sessile animals, such as molluscs, can offer fundamental insights into the adaptation of organisms for a wide range of environmental challenges. One of the best studied processes at the molecular level relevant to stress tolerance is the heat shock response in the genus Mytilus. We focus on the upstream region of Mytilus galloprovincialis Hsp90 genes and their structural and functional associations, using comparative genomics and network inference. Sequence comparison of this region provides novel evidence that the transcription of Hsp90 is regulated via a dense region of transcription factor binding sites, also containing a region with similarity to the Gamera family of LINE-like repetitive sequences and a genus-specific element of unknown function. Furthermore, we infer a set of gene networks from tissue-specific expression data, and specifically extract an Hsp class-associated network, with 174 genes and 2,226 associations, exhibiting a complex pattern of expression across multiple tissue types. Our results (i) suggest that the heat shock response in the genus Mytilus is regulated by an unexpectedly complex upstream region, and (ii) provide new directions for the use of the heat shock process as a biosensor system for environmental monitoring

    Key mechanisms governing resolution of lung inflammation

    Get PDF
    Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered
    corecore