19 research outputs found

    Downregulation of miR-99a/let-7c/miR-125b miRNA cluster predicts clinical outcome in patients with unresected malignant pleural mesothelioma

    Get PDF
    Malignant pleural mesothelioma (MPM) is an aggressive tumor with a dismal overall survival (OS) and to date no molecular markers are available to guide patient management. This study aimed to identify a prognostic miRNA signature in MPM patients who did not undergo tumor resection. Whole miRNA profiling using a microarray platform was performed using biopsies on 27 unresected MPM patients with distinct clinical outcome: 15 patients had short survival (OS < 12 months) and 12 patients had long survival (OS > 36 months). Three prognostic miRNAs (mir- 99a, let-7c, and miR-125b) encoded at the same cluster (21q21) were selected for further validation and tested on publicly available miRNA sequencing data from 72 MPM patients with survival data. A risk model was built based on these 3 miRNAs that was validated by quantitative PCR in an independent set of 30 MPM patients. High-risk patients had shorter median OS (7.6 months) as compared with low-risk patients (median not reached). In the multivariate Cox model, a high-risk score was independently associated with shorter OS (HR=3.14; 95% CI, 1.18-8.34; P=0.022). Our study identified that the downregulation of the miR-99a/let-7/miR-125b miRNA cluster predicts poor outcome in unresected MPM

    Metabolomics-Based Discovery of Diagnostic Biomarkers for Onchocerciasis

    Get PDF
    Onchocerciasis, caused by the filarial parasite Onchocerca volvulus, afflicts millions of people, causing such debilitating symptoms as blindness and acute dermatitis. There are no accurate, sensitive means of diagnosing O. volvulus infection. Clinical diagnostics are desperately needed in order to achieve the goals of controlling and eliminating onchocerciasis and neglected tropical diseases in general. In this study, a metabolomics approach is introduced for the discovery of small molecule biomarkers that can be used to diagnose O. volvulus infection. Blood samples from O. volvulus infected and uninfected individuals from different geographic regions were compared using liquid chromatography separation and mass spectrometry identification. Thousands of chromatographic mass features were statistically compared to discover 14 mass features that were significantly different between infected and uninfected individuals. Multivariate statistical analysis and machine learning algorithms demonstrated how these biomarkers could be used to differentiate between infected and uninfected individuals and indicate that the diagnostic may even be sensitive enough to assess the viability of worms. This study suggests a future potential of these biomarkers for use in a field-based onchocerciasis diagnostic and how such an approach could be expanded for the development of diagnostics for other neglected tropical diseases

    A computational procedure for functional characterization of potential marker genes from molecular data: Alzheimer's as a case study

    Get PDF
    Abstract Background A molecular characterization of Alzheimer's Disease (AD) is the key to the identification of altered gene sets that lead to AD progression. We rely on the assumption that candidate marker genes for a given disease belong to specific pathogenic pathways, and we aim at unveiling those pathways stable across tissues, treatments and measurement systems. In this context, we analyzed three heterogeneous datasets, two microarray gene expression sets and one protein abundance set, applying a recently proposed feature selection method based on regularization. Results For each dataset we identified a signature that was successively evaluated both from the computational and functional characterization viewpoints, estimating the classification error and retrieving the most relevant biological knowledge from different repositories. Each signature includes genes already known to be related to AD and genes that are likely to be involved in the pathogenesis or in the disease progression. The integrated analysis revealed a meaningful overlap at the functional level. Conclusions The identification of three gene signatures showing a relevant overlap of pathways and ontologies, increases the likelihood of finding potential marker genes for AD.</p
    corecore