16 research outputs found

    Three-Dimensional Magnetic Reconnection

    Full text link
    The importance of magnetic reconnection as an energy release mechanism in many solar, stellar, magnetospheric and astrophysical phenomena has long been recognised. Reconnection is the only mechanism by which magnetic fields can globally restructure, enabling them to access a lower energy state. Over the past decade, there have been some major advances in our understanding of three-dimensional reconnection. In particular, the key characteristics of 3D magnetohydrodynamic (MHD) reconnection have been determined. For instance, 3D reconnection (i) occurs with or without nulls, (ii) occurs continuously and continually throughout a diffusion region and (iii) is driven by counter rotating flows. Furthermore, analysis of resistive 3D MHD magnetic experiments have revealed some intriguing effects relating to where and how reconnection occurs. To illustrate these new features, a series of constant-resistivity experiments, involving the interaction of two opposite-polarity magnetic sources in an overlying field, are considered. Such a simple interaction represents a typical building block of the Sun's magnetic atmosphere. By following the evolution of the magnetic topology, we are able to explain where, how and at what rate the reconnection occurs. Remarkably there can be up to five energy release sites at anyone time (compared to one in the potential case) and the duration of the interaction increases (more than doubles) as the resistivity decreases (by a factor of 16). The decreased resistivity also leads to a higher peak ohmic dissipation and more energy being released in total, as a result of a greater injection of Poynting flux.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Induction of eosinophil apoptosis by hydrogen peroxide promotes the resolution of allergic inflammation

    Get PDF
    Made available in DSpace on 2015-08-19T13:49:23Z (GMT). No. of bitstreams: 2 license.txt: 1914 bytes, checksum: 7d48279ffeed55da8dfe2f8e81f3b81f (MD5) ma_martins_etal_IOC-2105.pdf: 3830001 bytes, checksum: 2629ef32ff4c6dfb811625d5ef43b612 (MD5) Previous issue date: 2015Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Morfologia. Laboratório de Resolução da Resposta Inflamatória. Laboratório de Imunofarmacologia. Departamento de Bioquímica e Imunologia. Belo Horizonte, MG, Brasil.University of Edinburgh. The Queen’s Medical Research Institute. Medical Research Council Centre for Inflammation Research. Edinburgh, Scotland, UK.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Morfologia. Laboratório de Resolução da Resposta Inflamatória. Laboratório de Imunofarmacologia. Departamento de Bioquímica e Imunologia. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Morfologia. Laboratório de Resolução da Resposta Inflamatória. Laboratório de Imunofarmacologia. Departamento de Bioquímica e Imunologia. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Faculdade de Farmácia. Departamento de Análises Clínicas e Toxicológicas. Laboratório de Sinalização na Inflamação. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Microbiologia. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Inflamação. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Inflamação. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Inflamação. Rio de Janeiro, RJ, Brasil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Laboratório de Patologia Geral. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Faculdade de Farmácia. Departamento de Análises Clínicas e Toxicológicas. Laboratório de Sinalização na Inflamação. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Inflamação. Rio de Janeiro, RJ, Brasil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Morfologia. Laboratório de Resolução da Resposta Inflamatória. Belo Horizonte, MG, Brasil.University of Edinburgh. The Queen’s Medical Research Institute. Medical Research Council Centre for Inflammation Research. Edinburgh, Scotland, UK.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Morfologia. Laboratório de Resolução da Resposta Inflamatória. Laboratório de Imunofarmacologia. Departamento de Bioquímica e Imunologia. Belo Horizonte, MG, Brasil.Eosinophils are effector cells that have an important role in the pathogenesis of allergic disease. Defective removal of these cells likely leads to chronic inflammatory diseases such as asthma. Thus, there is great interest in understanding the mechanisms responsible for the elimination of eosinophils from inflammatory sites. Previous studies have demonstrated a role for certain mediators and molecular pathways responsible for the survival and death of leukocytes at sites of inflammation. Reactive oxygen species have been described as proinflammatory mediators but their role in the resolution phase of inflammation is poorly understood. The aim of this study was to investigate the effect of reactive oxygen species in the resolution of allergic inflammatory responses. An eosinophilic cell line (Eol-1) was treated with hydrogen peroxide and apoptosis was measured. Allergic inflammation was induced in ovalbumin sensitized and challenged mouse models and reactive oxygen species were administered at the peak of inflammatory cell infiltrate. Inflammatory cell numbers, cytokine and chemokine levels, mucus production, inflammatory cell apoptosis and peribronchiolar matrix deposition was quantified in the lungs. Resistance and elastance were measured at baseline and after aerosolized methacholine. Hydrogen peroxide accelerates resolution of airway inflammation by induction of caspase-dependent apoptosis of eosinophils and decrease remodeling, mucus deposition, inflammatory cytokine production and airway hyperreactivity. Moreover, the inhibition of reactive oxygen species production by apocynin or in gp91phox −/− mice prolonged the inflammatory response. Hydrogen peroxide induces Eol-1 apoptosis in vitro and enhances the resolution of inflammation and improves lung function in vivo by inducing caspase-dependent apoptosis of eosinophils

    Methods of data collection in qualitative research: Interviews and focus groups

    No full text
    This paper explores the most common methods of data collection used in qualitative research: interviews and focus groups. The paper examines each method in detail, focusing on how they work in practice, when their use is appropriate and what they can offer dentistry. Examples of empirical studies that have used interviews or focus groups are also provided
    corecore