43 research outputs found
Body composition in older acute stroke patients after treatment with individualized, nutritional supplementation while in hospital
<p>Abstract</p> <p>Background</p> <p>Individualized, nutritional support reduced undernutrition among older stroke patients and improved quality of life in our recent randomized, controlled trial. Weight control thus seems to be important after stroke, and methods for monitoring nutritional status need to be simple and non-invasive. Here we aimed to assess if the nutritional intervention altered body composition in men and women in this study cohort, and also to examine the correlation between the methods for assessing body-, fat- and fat-free mass.</p> <p>Methods</p> <p>Acute stroke patients > 65 years at nutritional risk were randomized to either individualized, nutritional treatment with energy- and protein rich supplementation (intervention, n = 58) or routine, nutritional care (control, n = 66) while in hospital. Body composition was assessed with anthropometry and bioelectrical impedance. The follow-up period was three months.</p> <p>Results</p> <p>During the first week while in hospital, weight loss was smaller in the intervention group compared with the controls (P = 0.013). After three months weight- and fat loss were significant in both men and women. Whereas no significant differences were found in changes in body composition between the male study groups, in the women both weight loss (P = 0.022) and fat loss (P = 0.005) was smaller in the intervention group compared with the controls. A high correlation (r = 0.87) between mid upper arm circumference (MUAC) and body mass index (BMI) was found.</p> <p>Conclusions</p> <p>Individualized nutritional support to older stroke patients in hospital was beneficial for maintaining an adequate body mass and body composition the first week and seemed to have a preventive effect on fat loss among women, but not among men after three months. Measurement of MUAC may be used in the assessment of nutritional status when BMI cannot be obtained.</p> <p>Trial registration</p> <p>This trial is registered with ClinicalTrials.gov, number NCT00163007.</p
Interventions to prevent disability in frail community-dwelling elderly: a systematic review
<p>Abstract</p> <p>Background</p> <p>There is an interest for intervention studies aiming at the prevention of disability in community-dwelling physically frail older persons, though an overview on their content, methodological quality and effectiveness is lacking.</p> <p>Methods</p> <p>A search for clinical trials involved databases PubMed, CINAHL and Cochrane Central Register of Controlled Trials and manually hand searching. Trials that included community-dwelling frail older persons based on physical frailty indicators and used disability measures for outcome evaluation were included. The selection of papers and data-extraction was performed by two independent reviewers. Out of 4602 titles, 10 papers remained that met the inclusion criteria. Of these, 9 were of sufficient methodological quality and concerned 2 nutritional interventions and 8 physical exercise interventions.</p> <p>Results</p> <p>No evidence was found for the effect of nutritional interventions on disability measures. The physical exercise interventions involved 2 single-component programs focusing on lower extremity strength and 6 multi-component programs addressing a variety of physical parameters. Out of 8 physical exercise interventions, three reported positive outcomes for disability. There was no evidence for the effect of single lower extremity strength training on disability. Differences between the multi-component interventions in e.g. individualization, duration, intensity and setting hamper the interpretation of the elements that consistently produced successful outcomes.</p> <p>Conclusion</p> <p>There is an indication that relatively long-lasting and high-intensive multicomponent exercise programs have a positive effect on ADL and IADL disability for community-living moderate physically frail older persons. Future research into disability prevention in physical frail older persons could be directed to more individualized and comprehensive programs.</p
Calculating Stage Duration Statistics in Multistage Diseases
Many human diseases are characterized by multiple stages of progression. While the typical sequence of disease progression can be identified, there may be large individual variations among patients. Identifying mean stage durations and their variations is critical for statistical hypothesis testing needed to determine if treatment is having a significant effect on the progression, or if a new therapy is showing a delay of progression through a multistage disease. In this paper we focus on two methods for extracting stage duration statistics from longitudinal datasets: an extension of the linear regression technique, and a counting algorithm. Both are non-iterative, non-parametric and computationally cheap methods, which makes them invaluable tools for studying the epidemiology of diseases, with a goal of identifying different patterns of progression by using bioinformatics methodologies. Here we show that the regression method performs well for calculating the mean stage durations under a wide variety of assumptions, however, its generalization to variance calculations fails under realistic assumptions about the data collection procedure. On the other hand, the counting method yields reliable estimations for both means and variances of stage durations. Applications to Alzheimer disease progression are discussed