110 research outputs found

    Early Evolution of Ionotropic GABA Receptors and Selective Regimes Acting on the Mammalian-Specific Theta and Epsilon Subunits

    Get PDF
    BACKGROUND: The amino acid neurotransmitter GABA is abundant in the central nervous system (CNS) of both invertebrates and vertebrates. Receptors of this neurotransmitter play a key role in important processes such as learning and memory. Yet, little is known about the mode and tempo of evolution of the receptors of this neurotransmitter. Here, we investigate the phylogenetic relationships of GABA receptor subunits across the chordates and detail their mode of evolution among mammals. PRINCIPAL FINDINGS: Our analyses support two major monophyletic clades: one clade containing GABA(A) receptor alpha, gamma, and epsilon subunits, and another one containing GABA(A) receptor rho, beta, delta, theta, and pi subunits. The presence of GABA receptor subunits from each of the major clades in the Ciona intestinalis genome suggests that these ancestral duplication events occurred before the divergence of urochordates. However, while gene divergence proceeded at similar rates on most receptor subunits, we show that the mammalian-specific subunits theta and epsilon experienced an episode of positive selection and of relaxed constraints, respectively, after the duplication event. Sites putatively under positive selection are placed on a three-dimensional model obtained by homology-modeling. CONCLUSIONS: Our results suggest an early divergence of the GABA receptor subunits, before the split from urochordates. We show that functional changes occurred in the lineages leading to the mammalian-specific subunit theta, and we identify the amino acid sites putatively responsible for the functional divergence. We discuss potential consequences for the evolution of mammals and of their CNS

    The cys-loop ligand-gated ion channel gene superfamily of the nematode, Caenorhabditis elegans

    Get PDF
    The nematode, Caenorhabditis elegans, possesses the most extensive known superfamily of cys-loop ligand-gated ion channels (cys-loop LGICs) consisting of 102 subunit-encoding genes. Less than half of these genes have been functionally characterised which include cation-permeable channels gated by acetylcholine (ACh) and γ-aminobutyric acid (GABA) as well as anion-selective channels gated by ACh, GABA, glutamate and serotonin. Following the guidelines set for genetic nomenclature for C. elegans, we have designated unnamed subunits as lgc genes (ligand-gated ion channels of the cys-loop superfamily). Phylogenetic analysis shows that several of these lgc subunits form distinct groups which may represent novel cys-loop LGIC subtypes
    corecore