11 research outputs found

    Kaons production at finite temperature and baryon density in an effective relativistic mean field model

    Full text link
    We investigate the kaons production at finite temperature and baryon density by means of an effective relativistic mean-field model with the inclusion of the full octet of baryons. Kaons are considered taking into account of an effective chemical potential depending on the self-consistent interaction between baryons. The obtained results are compared with a minimal coupling scheme, calculated for different values of the anti-kaon optical potential.Comment: 3 pages, contribution presented to the International Conference on Exotic Atoms and Related Topic

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    The charming beauty of the strong interaction

    No full text
    Charmed and beauty hadrons in matter are discussed within a unitarized coupled-channel model consistent with heavy-quark spin symmetry. We analyse the formation of D-mesic states as well as the propagation of charmed and beauty hadrons in heavy-ion collisions from LHC to FAIR energies.Charmed and beauty hadrons in matter are discussed within a unitarized coupled-channel model consistent with heavy-quark spin symmetry. We analyse the formation of D-mesic states as well as the propagation of charmed and beauty hadrons in heavy-ion collisions from LHC to FAIR energies
    corecore