7 research outputs found

    Evaluation of antibacterial, antifungal and modulatory activity of methanol and ethanol extracts of Padina sanctae-crucis

    Get PDF
    Background: Multi-resistant microorganisms such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida tropicalis e Candida krusei are the main causes of microbial infections. Padina sanctae-crucis is a seaweed often used to check the contamination of ecosystems by materials such as heavy metals, but studies of the antimicrobial activity of the same seaweed were not found.Methods: The tests for the minimum inhibitory concentration and   modulation of microbial resistance, with the use of ethanolic and  methanolic extracts of Padina Sanctae-cruces combined with drugs of the class of aminoglycosides and antifungal were used to evaluate the activity against the cited microorganisms.Results: Was observed a modulation of antibiotic activity between the natural products and the E. coli and S. aureus strains, indicating a synergism and antagonism respectively.Conclusions: The results showed a moderate modulatory effect against some microorganisms studied.Keywords: multi-resistant microorganisms, modulation, Padina Sanctae-crucis, antimicrobial activity

    Anacardium plants: Chemical,nutritional composition and biotechnological applications

    Get PDF
    Anacardium plants are native to the American tropical regions, and Anacardium occidentale L. (cashew tree) is the most recognized species of the genus. These species contain rich secondary metabolites in their leaf and shoot powder, fruits and other parts that have shown diverse applications. This review describes the habitat and cultivation of Anacardium species, phytochemical and nutritional composition, and their industrial food applications. Besides, we also discuss the secondary metabolites present in Anacardium plants which display great antioxidant and antimicrobial effects. These make the use of Anacardium species in the food industry an interesting approach to the development of green foods.AK. Jugran acknowledges the partial funding from Uttarakhand council for Biotechnology, Pantnagar, Uttarakhand, India (File No. UCB/R&D Project/2018-311) for this work. M. Martorell would like to thank the support offered by CONICYT PIA/APOYO CCTE AFB170007. N. Martins would like to thank the Portuguese Foundation for Science and Technology (FCT-Portugal) for the Strategic project ref. UID/BIM/04293/2013 and ?NORTE2020 - Northern Regional Operational Program? (NORTE-01-0145-FEDER- 000012)

    Antioxidant, Antimicrobial, and Anticancer Effects of Anacardium Plants: An Ethnopharmacological Perspective

    No full text
    Anacardium plants have received increasing recognition due to its nutritional and biological properties. A number of secondary metabolites are present in its leaves, fruits, and other parts of the plant. Among the diverse Anacardium plants' bioactive effects, their antioxidant, antimicrobial, and anticancer activities comprise those that have gained more attention. Thus, the present article aims to review the Anacardium plants' biological effects. A special emphasis is also given to their pharmacological and clinical efficacy, which may trigger further studies on their therapeutic properties with clinical trials.AJ acknowledged the funding from Uttarakhand council for Biotechnology, Pantnagar, Uttarakhand, India (File No. UCB/R&D Project/2018-311) for this work. MM would like to thank the support offered by CONICYT PIA/APOYO CCTE AFB170007

    Phytochemicals from fern species: potential for medicine applications

    No full text
    Ferns are an important phytogenetic bridge between lower and higher plants. Historically they have been used in many ways by humans, including as ornamental plants, domestic utensils, foods, and in handicrafts. In addition, they have found uses as medicinal herbs. Ferns produce a wide array of secondary metabolites endowed with different bioactivities that could potentially be useful in the treatment of many diseases. However, there is currently relatively little information in the literature on the phytochemicals present in ferns and their pharmacological applications, and the most recent review of the literature on the occurrence, chemotaxonomy and physiological activity of fern secondary metabolites was published over 20 years ago, by Soeder (Bot Rev 51:442\u2013536, 1985). Here, we provide an updated review of this field, covering recent findings concerning the bioactive phytochemicals and pharmacology of fern species

    Plant products with antifungal activity. From field to biotechnology strategies

    No full text
    In this chapter, informations on the recent advances regarding antifungal activity of natural products obtained from plants collected directly from their natural habitat or from plant cell and organ, cultures have been reported. The biotechnological approaches could increase uniformity and predictability of the extracts and overcome problems associated with geographical, seasonal, and environmental variations. Human fungal pathogens are the cause of severe diseases associated with high morbidity and mortality. The major human fungal pathogens are Candida species, dermatophytes, Aspergillus species, and Cryptococcus neoformans. Side effects and resistance are frequently attributed to the current antifungal agents. Moreover, the treatments often require long-term therapy and are not resolving. Plants represent a source of antifungal agents, but up to date, the number of new phytochemicals reaching the market is very low. This review attempts to summarize the current status of botanical screening efforts, as well as in vitro and in vivo studies on antifungal activity of plant products. Despite the currently non-uniform regulatory framework in all the states, the plant-derived products are increasingly in demand for their effectiveness. The basic conclusion from these studies is that rigorous, well-designed clinical trials are needed to validate the effectiveness and safety of plant extracts for their use as antifungals

    Phytochemicals from fern species: potential for medicine applications

    No full text
    corecore