2,060 research outputs found

    Acute changes in liver tumour perfusion measured non-invasively with arterial spin labelling

    Get PDF
    BACKGROUND: Non-invasive measures of tumour vascular perfusion are desirable, in order to assess response to vascular targeting (or modifying) therapies. In this study, hepatic arterial spin labelling (ASL) magnetic resonance imaging (MRI) was investigated to measure acute changes in perfusion of colorectal cancer in the liver, in response to vascular disruption therapy with OXi4503. METHODS: SW1222 and LS174T tumours were established in the liver of MF1 nu/nu mice via intrasplenic injection. Perfusion and R2(*) MRI measurements were acquired with an Agilent 9.4T horizontal bore scanner, before and at 90 min after 40 mg kg(-1) OXi4503. RESULTS: A significant decrease in SW1222 tumour perfusion was observed (-43±33%, P<0.005). LS174T tumours had a significantly lower baseline level of perfusion. Intrinsic susceptibility MRI showed a significant increase in R2(*) in LS174T tumours (28±25%, P<0.05). An association was found between the change in tumour perfusion and the proximity to large vessels, with pre-treatment blood flow predictive of subsequent response. Histological evaluation confirmed the onset of necrosis and evidence of heterogeneous response between tumour deposits. CONCLUSIONS: Hepatic ASL-MRI can detect acute response to targeted tumour vascular disruption entirely non-invasively. Hepatic ASL of liver tumours has potential for use in a clinical setting

    fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI

    Get PDF
    The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI

    Non-Invasive MRI of Blood-Cerebrospinal Fluid Barrier Function

    Get PDF
    The blood-cerebrospinal fluid barrier (BCSFB) is a highly dynamic transport interface that serves brain homeostasis. To date, however, understanding of its role in brain development and pathology has been hindered by the absence of a non-invasive technique for functional assessment. Here we describe a method for non-invasive measurement of BSCFB function by using tracer-free MRI to quantify rates of water delivery from arterial blood to ventricular cerebrospinal fluid. Using this method, we record a 36% decrease in BCSFB function in aged mice, compared to a 13% decrease in parenchymal blood flow, itself a leading candidate biomarker of early neurodegenerative processes. We then apply the method to explore the relationship between BCSFB function and ventricular morphology. Finally, we provide proof of application to the human brain. Our findings position the BCSFB as a promising new diagnostic and therapeutic target, the function of which can now be safely quantified using non-invasive MRI

    CO2 signaling mediates neurovascular coupling in the cerebral cortex

    Get PDF
    Neurovascular coupling is a fundamental brain mechanism that regulates local cerebral blood flow (CBF) in response to changes in neuronal activity. Functional imaging techniques are commonly used to record these changes in CBF as a proxy of neuronal activity to study the human brain. However, the mechanisms of neurovascular coupling remain incompletely understood. Here we show in experimental animal models (laboratory rats and mice) that the neuronal activity-dependent increases in local CBF in the somatosensory cortex are prevented by saturation of the CO2-sensitive vasodilatory brain mechanism with surplus of exogenous CO2 or disruption of brain CO2/HCO3− transport by genetic knockdown of electrogenic sodium-bicarbonate cotransporter 1 (NBCe1) expression in astrocytes. A systematic review of the literature data shows that CO2 and increased neuronal activity recruit the same vasodilatory signaling pathways. These results and analysis suggest that CO2 mediates signaling between neurons and the cerebral vasculature to regulate brain blood flow in accord with changes in the neuronal activity

    A Critical Role for Purinergic Signalling in the Mechanisms Underlying Generation of BOLD fMRI Responses

    Get PDF
    The mechanisms of neurovascular coupling underlying generation of BOLD fMRI signals remain incompletely understood. It has been proposed that release of vasoactive substances by astrocytes couples neuronal activity to changes in cerebrovascular blood flow. However, the role of astrocytes in fMRI responses remains controversial. Astrocytes communicate via release of ATP, and here we tested the hypothesis that purinergic signaling plays a role in the mechanisms underlying fMRI. An established fMRI paradigm was used to trigger BOLD responses in the forepaw region of the somatosensory cortex (SSFP) of an anesthetized rat. Forepaw stimulation induced release of ATP in the SSFP region. To interfere with purinergic signaling by promoting rapid breakdown of the vesicular and/or released ATP, a lentiviral vector was used to express a potent ectonucleotidase, transmembrane prostatic acid phosphatase (TMPAP), in the SSFP region. TMPAP expression had no effect on resting cerebral blood flow, cerebrovascular reactivity, and neuronal responses to sensory stimulation. However, TMPAP catalytic activity markedly reduced the magnitude of BOLD fMRI responses triggered in the SSFP region by forepaw stimulation. Facilitated ATP breakdown could result in accumulation of adenosine. However, blockade of A1 receptors had no effect on BOLD responses and did not reverse the effect of TMPAP. These results suggest that purinergic signaling plays a significant role in generation of BOLD fMRI signals. We hypothesize that astrocytes activated during periods of enhanced neuronal activity release ATP, which propagates astrocytic activation, stimulates release of vasoactive substances and dilation of cerebral vasculature

    Diffusion microscopic MRI of the mouse embryo: Protocol and practical implementation in the splotch mouse model

    Get PDF
    Advanced methodologies for visualizing novel tissue contrast are essential for phenotyping the ever-increasing number of mutant mouse embryos being generated. Although diffusion microscopic MRI (μMRI) has been used to phenotype embryos, widespread routine use is limited by extended scanning times, and there is no established experimental procedure ensuring optimal data acquisition

    Imaging the paediatric lung: what does nanotechnology have to offer?

    Get PDF
    This review will provide an overview of current research into lung imaging with nanoparticles, with a focus on the use of nanoparticles as molecular imaging agents to observe pathological processes and to monitor the effectiveness of nanoparticulate drug delivery systems. Various imaging modalities together with their advantages and limitations for lung imaging will be discussed. We will also explore the range of nanoparticles used, as well as active or passive targeting of nanoparticles

    The role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis

    Get PDF
    Rationale:Idiopathic pulmonaryfibrosis (IPF)isa progressivelung disease of unknown cause that leads to respiratory failure and death within 5 years of diagnosis. Overt respiratory infection and immunosuppression carry a high morbidity and mortality, and polymorphisms in genes related to epithelial integrity and host defense predispose to IPF. Objectives: To investigate the role of bacteria in the pathogenesis and progression of IPF. Methods: We prospectively enrolled patients diagnosed with IPF according to international criteria together with healthy smokers, nonsmokers, and subjectswithmoderate chronic obstructive pulmonary disease as control subjects. Subjects underwent bronchoalveolar lavage (BAL), from which genomic DNA was isolated. The V3–V5 region of the bacterial 16S rRNA gene was amplified, allowing quantification of bacterial load and identification of communities by 16S rRNA quantitative polymerase chain reaction and pyrosequencing. Measurements and Main Results: Sixty-five patients with IPF had double the burden of bacteria in BAL fluid compared with 44 control subjects. Baseline bacterial burden predicted the rate of decline in lung volume and risk of death and associated independently with the rs35705950 polymorphism of the MUC5B mucin gene, a proven host susceptibilityfactorfor IPF. Sequencing yielded912,883 high-quality reads from all subjects.WeidentifiedHaemophilus, Streptococcus,Neisseria, and Veillonella spp. to be more abundant in cases than control subjects. Regression analyses indicated that these specific operational taxonomic units as well as bacterial burden associated independently with IPF. Conclusions: IPF is characterized by an increased bacterial burden in BAL that predicts decline in lung function and death. Trials of antimicrobial therapy are needed to determine if microbial burden is pathogenic in the disease

    Remote and Selective Control of Astrocytes by Magnetomechanical Stimulation

    Get PDF
    Astrocytes play crucial and diverse roles in brain health and disease. The ability to selectively control astrocytes provides a valuable tool for understanding their function and has the therapeutic potential to correct dysfunction. Existing technologies such as optogenetics and chemogenetics require the introduction of foreign proteins, which adds a layer of complication and hinders their clinical translation. A novel technique, magnetomechanical stimulation (MMS), that enables remote and selective control of astrocytes without genetic modification is described here. MMS exploits the mechanosensitivity of astrocytes and triggers mechanogated Ca2+ and adenosine triphosphate (ATP) signaling by applying a magnetic field to antibody-functionalized magnetic particles that are targeted to astrocytes. Using purpose-built magnetic devices, the mechanosensory threshold of astrocytes is determined, a sub-micrometer particle for effective MMS is identified, the in vivo fate of the particles is established, and cardiovascular responses are induced in rats after particles are delivered to specific brainstem astrocytes. By eliminating the need for device implantation and genetic modification, MMS is a method for controlling astroglial activity with an improved prospect for clinical application than existing technologies

    Tissue magnetic susceptibility mapping as a marker of tau pathology in Alzheimer's disease.

    Get PDF
    Alzheimer's disease is connected to a number of other neurodegenerative conditions, known collectively as 'tauopathies', by the presence of aggregated tau protein in the brain. Neuroinflammation and oxidative stress in AD are associated with tau pathology and both the breakdown of axonal sheaths in white matter tracts and excess iron accumulation grey matter brain regions. Despite the identification of myelin and iron concentration as major sources of contrast in quantitative susceptibility maps of the brain, the sensitivity of this technique to tau pathology has yet to be explored. In this study, we perform Quantitative Susceptibility Mapping (QSM) and T2* mapping in the rTg4510, a mouse model of tauopathy, both in vivo and ex vivo. Significant correlations were observed between histological measures of myelin content and both mean regional magnetic susceptibility and T2* values. These results suggest that magnetic susceptibility is sensitive to tissue myelin concentrations across different regions of the brain. Differences in magnetic susceptibility were detected in the corpus callosum, striatum, hippocampus and thalamus of the rTg4510 mice relative to wild type controls. The concentration of neurofibrillary tangles was found to be low to intermediate in these brain regions indicating that QSM may be a useful biomarker for early stage detection of tau pathology in neurodegenerative diseases
    • …
    corecore