1,137 research outputs found

    Effect of communicating genetic and phenotypic risk for type 2 diabetes in combination with lifestyle advice on objectively measured physical activity: protocol of a randomised controlled trial.

    Get PDF
    BACKGROUND: Type 2 diabetes (T2D) is associated with increased risk of morbidity and premature mortality. Among those at high risk, incidence can be halved through healthy changes in behaviour. Information about genetic and phenotypic risk of T2D is now widely available. Whether such information motivates behaviour change is unknown. We aim to assess the effects of communicating genetic and phenotypic risk of T2D on risk-reducing health behaviours, anxiety, and other cognitive and emotional theory-based antecedents of behaviour change. METHODS: In a parallel group, open randomised controlled trial, approximately 580 adults born between 1950 and 1975 will be recruited from the on-going population-based, observational Fenland Study (Cambridgeshire, UK). Eligible participants will have undergone clinical, anthropometric, and psychosocial measurements, been genotyped for 23 single-nucleotide polymorphisms associated with T2D, and worn a combined heart rate monitor and accelerometer (Actiheart(®)) continuously for six days and nights to assess physical activity. Participants are randomised to receive either standard lifestyle advice alone (control group), or in combination with a genetic or a phenotypic risk estimate for T2D (intervention groups). The primary outcome is objectively measured physical activity. Secondary outcomes include self-reported diet, self-reported weight, intention to be physically active and to engage in a healthy diet, anxiety, diabetes-related worry, self-rated health, and other cognitive and emotional outcomes. Follow-up occurs eight weeks post-intervention. Values at follow-up, adjusted for baseline, will be compared between randomised groups. DISCUSSION: This study will provide much needed evidence on the effects of providing information about the genetic and phenotypic risk of T2D. Importantly, it will be among the first to examine the impact of genetic risk information using a randomised controlled trial design, a population-based sample, and an objectively measured behavioural outcome. Results of this trial, along with recent evidence syntheses of similar studies, should inform policy concerning the availability and use of genetic risk information.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Randomised controlled trial of the effects of physical activity feedback on awareness and behaviour in UK adults: the FAB study protocol [ISRCTN92551397].

    Get PDF
    BACKGROUND: While there are increasing data implicating poor recognition of physical inactivity as a potential barrier to healthy behaviour change, the efficacy of feedback to promote physical activity is uncertain. Using a randomised controlled trial nested within a population-based cohort study, we plan to test three variations of physical activity feedback against a control group. Our primary objective is to assess the efficacy of physical activity feedback in promoting physical activity behaviour change. Secondary objectives are to determine the influence of feedback on physical activity awareness and cognitions, and to compare behavioural effects by type of feedback. METHODS/DESIGN: We aim to recruit 500 healthy participants aged 30 to 55 years from the ongoing Fenland Study (Cambridge, UK). Following careful phenotyping during baseline measurement (anthropometric, clinical, body composition and fitness measurements, as well as questionnaires assessing self-reported and self-rated physical activity, psychosocial correlates of physical activity behaviour, diet, lifestyle and general health), participants wear a combined heart rate and movement sensor (Actiheart(R)) for six continuous days and nights. After receipt of the physical activity data (around 2 weeks later), participants are randomly allocated to either a control group (no feedback) or one of three types of personalised physical activity feedback ('simple', 'visualised' or 'contextualised'), and complete repeat measures of self-rated physical activity and psychosocial correlates. Approximately five weeks after receiving feedback, all participants wear the Actiheart(R) for another six-day follow-up period and complete repeat questionnaires. Values at outcome, adjusted for baseline, will be compared between randomised groups. DISCUSSION: Given the randomised trial design and use of objective measure of physical activity, this study is likely to provide valuable insights into the efficacy of a feedback intervention in changing physical activity behaviour, as well as the psychological mechanisms involved. TRIAL REGISTRATION: Current Controlled Trials: ISRCTN92551397.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    A Novel Tantalum-Containing Bioglass. Part II. Development of a Bioadhesive for Sternal Fixation and Repair

    Get PDF
    With over a million median sternotomy surgeries performed worldwide every year, sternal wound complications have posed a serious risk to the affected patients. A rigid therapeutic sternal fixation device has therefore become a necessity. In this work, the incorporation of up to 0.5 mol% of tantalum pentoxide (Ta2O5), in exchange for zinc oxide (ZnO), into the SiO2-ZnO-CaO-SrO-P2O5 glass system is presented. The effect of Ta incorporation on the physical, chemical and biological properties of the glass polyalkenoate cements (GPCs) prepared from them have been presented in this manuscript. The data obtained have confirmed that Ta2O5 incorporation into the reference glass system results in increased working times, radiopacity, ion solubility, and long-term mechanical stability. The formulated glass systems have also shown clear antibacterial and antifungal activity against both Gram-negative (Escherichia coli) and Gram-positive prokaryotes (Staphylococcus aureus and Streptococcus epidermidis), as well as eukaryotes (Fusarium solani). Cytotoxicity testing showed that Ta incorporation results in no toxicity effect and may simulate osseo-integration when tested in animal models. These new metallic-containing biomaterial adhesives have been developed for sternal fixation and repair. As a permanent implant, the formulated adhesives can be used in conjunction with sternal cable ties to offer optimal fixation for patients and reduce post-operative complications such as bacterial infection and pain from micro-motion

    Seasonal Variation in Children's Physical Activity and Sedentary Time.

    Get PDF
    PURPOSE: Understanding seasonal variation in physical activity is important for informing public health surveillance and intervention design. The aim of the current study was to describe seasonal variation in children's objectively measured physical activity and sedentary time. METHODS: Data are from the UK Millennium Cohort Study. Participants were invited to wear an accelerometer for 7 d on five occasions between November 2008 and January 2010. Outcome variables were sedentary time (2241 counts per minute, min·d(-1)). The season was characterized using a categorical variable (spring, summer, autumn, or winter) and a continuous function of day of the year. Cross-classified linear regression models were used to estimate the association of each of these constructs with the outcome variables. Modification of the seasonal variation by sex, weight status, urban/rural location, parental income, and day of the week (weekday/weekend) was examined using interaction terms in regression models. RESULTS: At least one wave of valid accelerometer data was obtained from 704 participants (47% male; baseline age, 7.6 (0.3) yr). MVPA was lower in autumn and winter relative to spring, with the magnitude of this difference varying by weekday/weekend, sex, weight status, urban/rural location, and family income (P for interaction <0.05 in all cases). Total sedentary time was greater in autumn and winter compared with spring; the seasonal effect was stronger during the weekend than during the weekday (P for interaction <0.01). CONCLUSIONS: Lower levels of MVPA and elevated sedentary time support the implementation of intervention programs during autumn and winter. Evidence of greater seasonal variation in weekend behavior and among certain sociodemographic subgroups highlights targets for tailored intervention programs.The co-operation of the participating families is gratefully acknowledged. The fourth sweep of the Millennium Cohort Study was funded by grants to Professor Health Joshi, former director of the study, from the Economic and Social Research Council and a consortium of government funders. The current director is Professor Lucinda Platt. The authors acknowledge: the Centre for Longitudinal Studies, Institute of Education for the use of these data; the UK Data Service for making them available; the MRC Centre of Epidemiology for Child Health (Grant reference G0400546), Institute of Child Health, University College London for creating the accelerometer data resource which was funded by the Wellcome Trust (grant reference 084686/Z/08/A). The institutions and funders acknowledged bear no responsibility for the analysis or interpretation of these data. The work of Andrew J Atkin, Flo Harrison, and Esther M F van Sluijs was supported, wholly or in part, by the Centre for Diet and Activity Research (CEDAR), a UKCRC Public Health Research Centre of Excellence (RES-590-28-0002). Funding from the British Heart Foundation, Department of Health, Economic and Social Research Council, Medical Research Council, and the Wellcome Trust, under the auspices of the UK Clinical Research Collaboration, is gratefully acknowledged. The work of Soren Brage, Stephen Sharp and Esther MF van Sluijs was supported by the Medical Research Council (MC_UU_12015/7, MC_UU_12015/3, MC_UU_12015/1).This is the final version of the article. It first appeared from Wolters Kluwer via http://dx.doi.org/10.1249/MSS.000000000000078

    Overestimation of physical activity level is associated with lower BMI: a cross-sectional analysis.

    Get PDF
    BACKGROUND: Poor recognition of physical inactivity may be an important barrier to healthy behaviour change, but little is known about this phenomenon. We aimed to characterize a high-risk population according to the discrepancies between objective and self-rated physical activity (PA), defined as awareness. METHODS: An exploratory cross-sectional analysis of PA awareness using baseline data collected from 365 ProActive participants between 2001 and 2003 in East Anglia, England. Self-rated PA was defined as 'active' or 'inactive' (assessed via questionnaire). Objective PA was defined according to achievement of guideline activity levels (≥30 minutes or <30 minutes spent at least moderate intensity PA, assessed by heart rate monitoring). Four awareness groups were created: 'Realistic Actives', 'Realistic Inactives', 'Overestimators' and 'Underestimators'. Logistic regression was used to assess associations between awareness group and 17 personal, social and biological correlates. RESULTS: 63.3% of participants (N = 231) were inactive according to objective measurement. Of these, 45.9% rated themselves as active ('Overestimators'). In a multiple logistic regression model adjusted for age and smoking, males (OR = 2.11, 95% CI = 1.12, 3.98), those with lower BMI (OR = 0.89, 95% CI = 0.84, 0.95), younger age at completion of full-time education (OR = 0.83, 95% CI = 0.74, 0.93) and higher general health perception (OR = 1.02 CI = 1.00, 1.04) were more likely to overestimate their PA. CONCLUSIONS: Overestimation of PA is associated with favourable indicators of relative slimness and general health. Feedback about PA levels could help reverse misperceptions.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Who will increase their physical activity? Predictors of change in objectively measured physical activity over 12 months in the ProActive cohort.

    Get PDF
    BACKGROUND: The aim was to identify predictors of change in objectively measured physical activity over 12 months in the ProActive cohort to improve understanding of factors influencing change in physical activity. METHODS: ProActive is a physical activity promotion trial that took place in Eastern England (1999-2004). 365 offspring of people with type 2 diabetes underwent measurement of physical activity energy expenditure (PAEE) using heart rate monitoring, fitness, and anthropometric and biochemical status at baseline and 1 year (n = 321). Linear regression was used to quantify the associations between baseline demographic, clinical, psychosocial and behavioural variables and change in PAEE over 12 months. This study is registered as ISRCTN61323766. RESULTS: ProActive participants significantly increased their PAEE by 0.6 kj/min (SD 4.2, p = 0.006) over one year, the equivalent of around 20 minutes brisk walking/day. Male sex and higher fitness at baseline predicted increase in PAEE. No significant associations were found for any other variables. Very few baseline demographic, clinical, psychosocial and behavioural predictors were associated with change in objectively measured physical activity. CONCLUSIONS: Traditional baseline determinants of self-reported physical activity targeted by behavioural interventions may be relatively weak predictors of change in objectively measured physical activity. Further research is needed to improve our understanding of factors influencing change in physical activity to inform the development and targeting of interventions.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    The independent prospective associations of activity intensity and dietary energy density with adiposity in young adolescents.

    Get PDF
    There is limited evidence on the prospective association of time spent in activity intensity (sedentary (SED), moderate (MPA) or vigorous (VPA) physical activity) and dietary intake with adiposity indicators in young people. This study aimed to assess associations between (1) baseline objectively measured activity intensity, dietary energy density (DED) and 4-year change in adiposity and (2) 4-year change in activity intensity/DED and adiposity at follow-up. We conducted cohort analyses including 367 participants (10 years at baseline, 14 years at follow-up) with valid data for objectively measured activity (Actigraph), DED (4-d food diary), anthropometry (waist circumference (WC), %body fat (%BF), fat mass index (FMI), weight status) and covariates. Linear and logistic regression models were fit, including adjustment for DED and moderate-to-vigorous physical activity. Results showed that baseline DED was associated with change in WC (β for 1kJ/g difference: 0·71; 95% CI 0·26, 1·17), particularly in boys (1·26; 95% CI 0·41, 2·16 v. girls: 0·26; 95% CI -0·34, 0·87), but not with %BF, FMI or weight status. In contrast, baseline SED, MPA or VPA were not associated with any of the outcomes. Change in DED was negatively associated with FMI (β for 1kJ/g increase: -0·86; 95% CI -1·59, -0·12) and %BF (-0·86; 95% CI -1·25, -0·11) but not WC (-0·27; 95% CI -1·02, 0·48). Change in SED, MPA and VPA did not predict adiposity at follow-up. In conclusion, activity intensity was not prospectively associated with adiposity, whereas the directions of associations with DED were inconsistent. To inform public health efforts, future studies should continue to analyse longitudinal data to further understand the independent role of different energy-balance behaviours in changes in adiposity in early adolescence.We would like to thank the schools, children and parents for their participation in the SPEEDY study. The SPEEDY study is funded by the National Prevention Research Initiative (http://www.npri.org.uk), consisting of the following Funding Partners: British Heart Foundation; Cancer Research UK; Department of Health; Diabetes UK; Economic and Social Research Council; Medical Research Council; Health and Social Care Research and Development Office for the Northern Ireland; Chief Scientist Office, Scottish Government Health Directorates; Welsh Assembly Government and World Cancer Research Fund. This work was also supported by the Medical Research Council [Unit Programme numbers MC_UU_12015/3; MC_UU_12015/4; MC_UU_12015/7; U105960389] and the Centre for Diet and Activity Research (CEDAR), a UKCRC Public Health Research: Centre of Excellence. Funding from the British Heart Foundation, Economic and Social Research Council, Medical Research Council, the National Institute for Health Research, and the Wellcome Trust, under the auspices of the UK Clinical Research Collaboration, is gratefully acknowledged. We also thank everyone who helped with the data collection and Norfolk Children’s Services for their invaluable input and support. In addition, we would like to Rebekah Steele, Kate Westgate and Stefanie Mayle from the physical activity technical team at the MRC Epidemiology Unit for their assistance in processing the accelerometer data. No authors declare a conflict of interest.This is the final version of the article. It first appeared from Cambridge University Press via http://dx.doi.org/10.1017/S000711451500509

    Awareness of physical activity in healthy middle-aged adults: a cross-sectional study of associations with sociodemographic, biological, behavioural, and psychological factors.

    Get PDF
    BACKGROUND: Interventions to promote physical activity have had limited success. One reason may be that inactive adults are unaware that their level of physical activity is inadequate and do not perceive a need to change their behaviour. We aimed to assess awareness of physical activity, defined as the agreement between self-rated and objective physical activity, and to investigate associations with sociodemographic, biological, behavioural, and psychological factors. METHODS: We conducted an exploratory, cross-sectional analysis of awareness of physical activity using baseline data collected from 453 participants of the Feedback, Awareness and Behaviour study (Cambridgeshire, UK). Self-rated physical activity was measured dichotomously by asking participants if they believed they were achieving the recommended level of physical activity. Responses were compared to objective physical activity, measured using a combined accelerometer and heart rate monitor (Actiheart®). Four awareness groups were created: overestimators, realistic inactives, underestimators, and realistic actives. Logistic regression was used to assess associations between awareness group and potential correlates. RESULTS: The mean (standard deviation) age of participants was 47.0 (6.9) years, 44.4% were male, and 65.1% were overweight (body mass index ≥ 25). Of the 258 (57.0%) who were objectively classified as inactive, 130 (50.4%) misperceived their physical activity by incorrectly stating that they were meeting the guidelines (overestimators). In a multivariable logistic regression model adjusted for age and sex, those with a lower body mass index (Odds Ratio (OR) = 0.95, 95% Confidence Interval (CI) = 0.90 to 1.00), higher physical activity energy expenditure (OR = 1.03, 95% CI = 1.00 to 1.06) and self-reported physical activity (OR = 1.13, 95% CI = 1.07 to 1.19), and lower intention to increase physical activity (OR = 0.69, 95% CI = 0.48 to 0.99) and response efficacy (OR = 0.53, 95% CI = 0.31 to 0.91) were more likely to overestimate their physical activity. CONCLUSIONS: Overestimators have more favourable health characteristics than those who are realistic about their inactivity, and their psychological characteristics suggest that they are less likely to change their behaviour. Personalised feedback about physical activity may be an important first step to behaviour change

    An investigation of patterns of children's sedentary and vigorous physical activity throughout the week.

    Get PDF
    BACKGROUND: Participation in higher intensity activity (i.e. vigorous physical activity [VPA]) appears more consistently associated with lower adiposity, unfortunately little is known about the nature and patterns of VPA participation in children. OBJECTIVE: To examine the volume and patterns of vigorous and sedentary activity during different segments of the week (weekend, school-based and out-of-school). We also investigated differences by sex, socioeconomic status (SES) and weight status. DESIGN: A cross-sectional study including 1568 UK children aged 9-10 years. OUTCOME MEASURES: Sedentary activity (mins), total activity (counts/min) and VPA (mins) were measured by accelerometry. Using a series of 2 level mixed effects linear regression models we tested differences across the segmented week (school time [0900-1500] vs. out-of-school time [0700-0900 & 1500-2100]; and weekday vs. weekend); all models were adjusted for sex, weight status (gender- and age-specific body mass index [BMI] cut points), SES, age and accelerometer registered wear time. RESULTS: Boys and girls accumulated higher VPA out-of-school compared to during school (boys mean ± SD 16.9 ± 9.6 vs 12.6 ± 5.8; girls, 13.1 ± 7.7 vs 8.2 ± 4.0, both p 0.05). Less time was spent sedentary on weekdays compared to weekends (p < 0.001). Although boys were more physically active and girls accumulated more sedentary time, the overall pattern in which their physical activity intensity varied across the various day segments was similar when stratified by weight status and SES; and large volumes of sedentary time were observed each hour across the day. CONCLUSIONS: The promotion of VPA during the weekend may hold the greatest promise for increasing VPA. Interventions aimed at increasing physical activity in 9-10 year old children should aim to target all children independent of sex, SES or weight status.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore