127 research outputs found

    Oligoclonal expansions of CD8(+) T cells in chronic HIV infection are antigen specific

    Get PDF
    Acute HIV infection is associated with a vigorous immune response characterized by the proliferation of selected T cell receptor V beta (BV)-expressing CD8(+) T cells. These 'expansions', which are commonly detected in the peripheral blood, can persist during chronic HIV infection and may result in the dominance of particular clones. Such clonal populations are most consistent with antigen-driven expansions of CD8(+) T cells. However, due to the difficulties in studying antigen-specific T cells in vivo, it has been hard to prove that oligoclonal BV expansions are actually HIV specific. The use of tetrameric major histocompatibility complex-peptide complexes has recently enabled direct visualization of antigen-specific T cells ex vivo but has not provided information on their clonal composition. We have now made use of these tetrameric complexes in conjunction with anti-BV chain-specific monoclonal antibodies and analysis of cytotoxic T lymphocyte lines/clones to show that chronically clonally expanded CD8(+) T cells are HIV specific in vivo

    Locality and Singularity for Store-Atomic Memory Models

    Full text link
    Robustness is a correctness notion for concurrent programs running under relaxed consistency models. The task is to check that the relaxed behavior coincides (up to traces) with sequential consistency (SC). Although computationally simple on paper (robustness has been shown to be PSPACE-complete for TSO, PGAS, and Power), building a practical robustness checker remains a challenge. The problem is that the various relaxations lead to a dramatic number of computations, only few of which violate robustness. In the present paper, we set out to reduce the search space for robustness checkers. We focus on store-atomic consistency models and establish two completeness results. The first result, called locality, states that a non-robust program always contains a violating computation where only one thread delays commands. The second result, called singularity, is even stronger but restricted to programs without lightweight fences. It states that there is a violating computation where a single store is delayed. As an application of the results, we derive a linear-size source-to-source translation of robustness to SC-reachability. It applies to general programs, regardless of the data domain and potentially with an unbounded number of threads and with unbounded buffers. We have implemented the translation and verified, for the first time, PGAS algorithms in a fully automated fashion. For TSO, our analysis outperforms existing tools

    Selection analysis identifies unusual clustered mutational changes in Omicron lineage BA.1 that likely impact Spike function.

    Get PDF
    Among the 30 non-synonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (i) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (ii) interactions of Spike with ACE2 receptors, and (iii) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any genomes within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron over all previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected

    The interstitium in cardiac repair: role of the immune-stromal cell interplay

    Get PDF
    Cardiac regeneration, that is, restoration of the original structure and function in a damaged heart, differs from tissue repair, in which collagen deposition and scar formation often lead to functional impairment. In both scenarios, the early-onset inflammatory response is essential to clear damaged cardiac cells and initiate organ repair, but the quality and extent of the immune response vary. Immune cells embedded in the damaged heart tissue sense and modulate inflammation through a dynamic interplay with stromal cells in the cardiac interstitium, which either leads to recapitulation of cardiac morphology by rebuilding functional scaffolds to support muscle regrowth in regenerative organisms or fails to resolve the inflammatory response and produces fibrotic scar tissue in adult mammals. Current investigation into the mechanistic basis of homeostasis and restoration of cardiac function has increasingly shifted focus away from stem cell-mediated cardiac repair towards a dynamic interplay of cells composing the less-studied interstitial compartment of the heart, offering unexpected insights into the immunoregulatory functions of cardiac interstitial components and the complex network of cell interactions that must be considered for clinical intervention in heart diseases

    Studying Operational Models of Relaxed Concurrency

    No full text

    Studying Operational Models of Relaxed Concurrency

    No full text
    • …
    corecore