21 research outputs found

    Lipophilic aroylhydrazone chelator HNTMB and its multiple effects on ovarian cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metal chelators have gained much attention as potential anti-cancer agents. However, the effects of chelators are often linked solely to their capacity to bind iron while the potential complexation of other trace metals has not been fully investigated. In present study, we evaluated the effects of various lipophilic aroylhydrazone chelators (AHC), including novel compound HNTMB, on various ovarian cancer cell lines (SKOV-3, OVCAR-3, NUTU-19).</p> <p>Methods</p> <p>Cell viability was analyzed via MTS cytotoxicity assays and NCI60 cancer cell growth screens. Apoptotic events were monitored via Western Blot analysis, fluorescence microscopy and TUNEL assay. FACS analysis was carried out to study Cell Cycle regulation and detection of intracellular Reactive Oxygen Species (ROS)</p> <p>Results</p> <p>HNTMB displayed high cytotoxicity (IC50 200-400 nM) compared to previously developed AHC (oVtBBH, HNtBBH, StBBH/206, HNTh2H/315, HNI/311; IC50 0.8-6 μM) or cancer drug Deferoxamine, a hexadentate iron-chelator (IC50 12-25 μM). In a NCI60 cancer cell line screen HNTMB exhibited growth inhibitory effects with remarkable differences in specificity depending on the cell line studied (GI50 10 nM-2.4 μM). In SKOV-3 ovarian cancer cells HNTMB treatment led to chromatin fragmentation and activation of the extrinsic and intrinsic pathways of apoptosis with specific down-regulation of Bcl-2. HNTMB caused delayed cell cycle progression of SKOV-3 through G2/M phase arrest. HNTMB can chelate iron and copper of different oxidation states. Complexation with copper lead to high cytotoxicity via generation of reactive oxygen species (ROS) while treatment with iron complexes of the drug caused neither cytotoxicity nor increased ROS levels.</p> <p>Conclusions</p> <p>The present report suggests that both, non-complexed HNTMB as a chelator of intracellular trace-metals as well as a cytotoxic HNTMB/copper complex may be developed as potential therapeutic drugs in the treatment of ovarian and other solid tumors.</p

    Dual effect of oxidative stress on leukemia cancer induction and treatment

    Get PDF

    Tumor reduction in primary andmetastatic pancreatic cancer lesions with nab-paclitaxel and gemcitabine: An exploratory analysis from a phase 3 study

    No full text
    © 2017 Wolters Kluwer Health, Inc. All rights reserved. Objectives: Results from the phase 3 Metastatic Pancreatic Adenocarcinoma Clinical Trial (MPACT) led to approval of nab-paclitaxel plus gemcitabine for first-line treatment of metastatic pancreatic cancer. The current analysis evaluated the effects of nab-paclitaxel plus gemcitabine versus gemcitabine on primary pancreatic and metastatic lesions. Methods: In this analysis of the previously described MPACT trial, changes in pancreatic and metastatic tumor burden were assessed using independently measured diameters of lesions on computed tomography or magnetic resonance imaging scans. Changes in the sums of longest tumor diameters were summarized using descriptive statistics and were included in a multivariate analysis of overall survival. Results: Primary pancreatic lesionmeasurementwas feasible. Reductions in primary pancreatic tumor burden and metastatic burden from baseline to nadir were significantly greater with nab-paclitaxel plus gemcitabine versus gemcitabine. Baseline pancreatic tumor burden was independently predictive of survival. Both regimens elicited linear reductions in primary pancreatic and metastatic tumor burden through time. There was a high within-patient concordance of tumor changes between primary pancreatic lesions and metastatic lesions. Conclusions: This analysis of MPACT demonstrated significant tumor shrinkage benefit for nab-paclitaxel plus gemcitabine in both primary pancreatic and metastatic lesions, supporting ongoing evaluation of this regimen in locally advanced disease

    Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS) involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L). The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress.</p> <p>Methods</p> <p>Effective concentration (EC<sub>50</sub>) values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA) in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay.</p> <p>Results</p> <p>The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC<sub>50</sub> > 20 mmol/L and fifty-five percent had an EC<sub>50</sub> < 20 mmol/L. With an EC<sub>50</sub> of 2.6–5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC<sub>50</sub>: 94,9 mmol/L), was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT) became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L).</p> <p>Conclusions</p> <p>Fifty-five percent of the human cancer cell lines tested were unable to protect themselves against oxidative stress mediated by ascorbic acid induced hydrogen peroxide production. The antioxidative enzyme catalase is important to protect cancer cells against cytotoxic hydrogen peroxide. Silenced catalase expression increased the susceptibility of the formerly resistant cancer cell line BT-20 to oxidative stress.</p

    Quantitation of motexafin lutetium in human plasma by liquid chromatography-tandem mass spectrometry and inductively coupled plasma-atomic emission spectroscopy

    No full text
    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) methods were developed and validated for the evaluation of motexafin lutetium (MLu, lutetium texaphyrin, PCI-0123) pharmacokinetics in human plasma. The LC-MS/MS method was specific for MLu, whereas the ICP-AES method measured total elemental lutetium. Both methods were fast, simple, precise, and accurate. For the LC-MS/MS method, a closely related analogue (PCI-0353) was used as the internal standard (IS). MLu and the IS were extracted from plasma by protein precipitation and injected onto and LC-MS/MS system configured with a C18 column and an electrospray interface. The lower limit of quantitation was 0.05 μg MLu mL−1, with a signal-to-noise ratio of 15∶1. The response was linear from 0.05 to 5.0 μg MLu mL−1. For the ICP-AES method, indium was used as the IS. The sample was digested with nitric acid, diluted, filtered, and then injected onto the ICP-AES system. Two standard curve ranges were validated to meet the expected range of sample concentrations: 0.5 to 50, and 0.1 to 10 μg Lu mL−1. The LC-MS/MS and ICP-AES methods were validated to establish accuracy, precision, analyte stability, and assay robustness. Interday precision and accuracy of quality control samples were ≤6.3% coefficient of variation (CV) and within 2.2% relative error (RE) for the LC-MS/MS method, and ≤8.7% CV and within 4.9% RE for the ICP-AES method. Plasma samples from a subset of patients in a clinical study were analyzed using both methods. For a representative patient, over 90% of the elemental lutetium in plasma could be ascribed to intact MLu at early time points. This percentage decreased to 59% at 48 hours after dosing, suggesting that some degradation and/or metabolism of the drug may have occurred
    corecore