15 research outputs found

    Ethnic Label Use in Adolescents from Traditional and Non-Traditional Immigrant Communities

    Get PDF
    Understanding adolescents’ use of ethnic labels is a key developmental issue, particularly given the practical significance of identity and self-definition in adolescents’ lives. Ethnic labeling was examined among adolescents in the traditional immigrant receiving area of Los Angeles (Asian n = 258, Latino n = 279) and the non-traditional immigrant receiving area of North Carolina (Asian n = 165, Latino n = 239). Logistic regressions showed that adolescents from different geographic settings use different ethnic labels, with youth from NC preferring heritage and panethnic labels and youth from LA preferring hyphenated American labels. Second generation youth were more likely than first generation youth to use hyphenated American labels, and less likely to use heritage or panethnic labels. Greater ethnic centrality increased the odds of heritage label use, and greater English proficiency increased the odds of heritage-American label use. These associations significantly mediated the initial effects of setting. Further results examine ethnic differences as well as links between labels and self-esteem. The discussion highlights implications of ethnic labeling and context

    Electronic and chemical structure of the H2O/GaN(0001) interface under ambient conditions

    Get PDF
    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H(2)O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H(2)O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H(2)O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H(2)O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorption of H(2)O onto the GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H(2)O/GaN interface under operando conditions. Our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/electrode interface in a photoelectrochemical solar cell

    Enhanced electrolytic generation of oxygen gas at binary nickel oxide–cobalt oxide nanoparticle-modified electrodes

    No full text
    This study addresses the enhancement of the oxygen evolution reaction (OER) on glassy carbon, Au, and Pt electrodes modified with binary catalysts composed of nickel oxide nanoparticles (nano-NiOx) and cobalt oxide nanoparticles (nano-CoOx). Binary NiOx/CoOx-modified electrodes (with NiOx initially deposited) show a high catalytic activity and a marked stability which far exceeds that obtained at the individual oxide-modified electrodes. This enhancement is demonstrated by a marked negative shift (more than ca. 600 mV) in the onset potential of the OER compared to that obtained at the unmodified electrodes. The modified electrodes show a significantly higher long-term stability, over a period of 5 h of continuous electrolysis, without any significant loss of activity towards the OER in alkaline medium. The influence of the solution pH, the loading level, and sequence of deposition of each oxide on the electrocatalytic activity of the modified electrodes is addressed with an aim to maximize the catalytic activity of the modified electrodes towards the OER. SEM imaging is used to disclose the size and morphology of the fabricated nano-NiOx and nano-CoOx binary catalysts at the electrode surface
    corecore