12 research outputs found

    Absence of Ataxin-3 Leads to Enhanced Stress Response in C. elegans

    Get PDF
    Ataxin-3, the protein involved in Machado-Joseph disease, is able to bind ubiquitylated substrates and act as a deubiquitylating enzyme in vitro, and it has been involved in the modulation of protein degradation by the ubiquitin-proteasome pathway. C. elegans and mouse ataxin-3 knockout models are viable and without any obvious phenotype in a basal condition however their phenotype in stress situations has never been described

    The Lid Domain of Caenorhabditis elegans Hsc70 Influences ATP Turnover, Cofactor Binding and Protein Folding Activity

    Get PDF
    Hsc70 is a conserved ATP-dependent molecular chaperone, which utilizes the energy of ATP hydrolysis to alter the folding state of its client proteins. In contrast to the Hsc70 systems of bacteria, yeast and humans, the Hsc70 system of C. elegans (CeHsc70) has not been studied to date

    Stress response in the ascidian Ciona intestinalis: transcriptional profiling of genes for the heat shock protein 70 chaperone system under heat stress and endoplasmic reticulum stress

    No full text
    The genome of Ciona intestinalis contains eight genes for HSP70 superfamily proteins, 36 genes for J-proteins, a gene for a J-like protein, and three genes for BAG family proteins. To understand the stress responses of genes in the HSP70 chaperone system comprehensively, the transcriptional profiles of these 48 genes under heat stress and endoplasmic reticulum (ER) stress were studied using real-time reverse transcriptase–polymerase chain reaction (RT-PCR) analysis. Heat stress treatment increased the messenger RNA (mRNA) levels of six HSP70 superfamily genes, eight J-protein family genes, and two BAG family genes. In the cytoplasmic group of the DnaK subfamily of the HSP70 family, Ci-HSPA1/6/7-like was the only heat-inducible gene and Ci-HSPA2/8 was the only constitutively active gene which showed striking simplicity in comparison with other animals that have been examined genome-wide so far. Analyses of the time course and temperature dependency of the heat stress responses showed that the induction of Ci-HSPA1/6/7-like expression rises to a peak after heat stress treatment at 28°C (10°C upshift from control temperature) for 1 h. ER stress treatment with Brefeldin A, a drug that is known to act as ER stress inducer, increased the mRNA levels of four HSP70 superfamily genes and four J-protein family genes. Most stress-inducible genes are conserved between Ciona and vertebrates, as expected from a close evolutionary relationship between them. The present study characterized the stress responses of HSP70 chaperone system genes in Ciona for the first time and provides essential data for comprehensive understanding of the functions of the HSP70 chaperone system
    corecore