15 research outputs found

    Self-similar extinction for a diffusive Hamilton-Jacobi equation with critical absorption

    Get PDF
    International audienceThe behavior near the extinction time is identified for non-negative solutions to the diffusive Hamilton-Jacobi equation with critical gradient absorption ∂_t u − ∆_p u + |∇u|^{p−1} = 0 in (0, ∞) × R^N , and fast diffusion 2N/(N + 1) < p < 2. Given a non-negative and radially symmetric initial condition with a non-increasing profile which decays sufficiently fast as |x| → ∞, it is shown that the corresponding solution u to the above equation approaches a uniquely determined separate variable solution of the form U (t, x) = (T_e − t)^{1/(2−p)} f_* (|x|), (t, x) ∈ (0, T_e) × R^N , as t → T_e , where T_e denotes the finite extinction time of u. A cornerstone of the convergence proof is an underlying variational structure of the equation. Also, the selected profile f_* is the unique non-negative solution to a second order ordinary differential equation which decays exponentially at infinity. A complete classification of solutions to this equation is provided, thereby describing all separate variable solutions of the original equation. One important difficulty in the uniqueness proof is that no monotonicity argument seems to be available and it is overcome by the construction of an appropriate Pohozaev functional
    corecore