84 research outputs found

    Production of entanglement in Raman three-level systems using feedback

    Full text link
    We examine the theoretical limits of the generation of entanglement in a damped coupled ion-cavity system using jump-based feedback. Using Raman transitions to produce entanglement between ground states reduces the necessary feedback bandwidth, but does not improve the overall effect of the spontaneous emission on the final entanglement. We find that the fidelity of the resulting entanglement will be limited by the asymmetries produced by vibrations in the trap, but that the concurrence remains above 0.88 for realistic ion trap sizes.Comment: 8 pages, 8 figure

    Photon Statistics; Nonlinear Spectroscopy of Single Quantum Systems

    Full text link
    A unified description of multitime correlation functions, nonlinear response functions, and quantum measurements is developed using a common generating function which allows a direct comparison of their information content. A general formal expression for photon counting statistics from single quantum objects is derived in terms of Liouville space correlation functions of the material system by making a single assumption that spontaneous emission is described by a master equation

    Dense Stellar Populations: Initial Conditions

    Full text link
    This chapter is based on four lectures given at the Cambridge N-body school "Cambody". The material covered includes the IMF, the 6D structure of dense clusters, residual gas expulsion and the initial binary population. It is aimed at those needing to initialise stellar populations for a variety of purposes (N-body experiments, stellar population synthesis).Comment: 85 pages. To appear in The Cambridge N-body Lectures, Sverre Aarseth, Christopher Tout, Rosemary Mardling (eds), Lecture Notes in Physics Series, Springer Verla

    Statistical strategies for avoiding false discoveries in metabolomics and related experiments

    Full text link

    The present and future of QCD

    Get PDF
    This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades
    corecore