7,578 research outputs found

    Overcharging: The Crucial Role of Excluded Volume

    Full text link
    In this Letter we investigate the mechanism for overcharging of a single spherical colloid in the presence of aqueous salts within the framework of the primitive model by molecular dynamics (MD) simulations as well as integral-equation theory. We find that the occurrence and strength of overcharging strongly depends on the salt-ion size, and the available volume in the fluid. To understand the role of the excluded volume of the microions, we first consider an uncharged system. For a fixed bulk concentration we find that upon increasing the fluid particle size one strongly increases the local concentration nearby the colloidal surface and that the particles become laterally ordered. For a charged system the first surface layer is built up predominantly by strongly correlated counterions. We argue that this a key mechanism to produce overcharging with a low electrostatic coupling, and as a more practical consequence, to account for charge inversion with monovalent aqueous salt ions.Comment: 7 pages, 3 figs (4 EPS files). To appear in Europhysics Letter

    Activity cycles in members of young loose stellar associations

    Get PDF
    Magnetic cycles have been detected in tens of solar-like stars. The relationship between the cycle properties and global stellar parameters is not fully understood yet. We searched for activity cycles in 90 solar-like stars with ages between 4 and 95 Myr aiming to investigate the properties of activity cycles in this age range. We measured the length PcycP_{ cyc} of a given cycle by analyzing the long-term time-series of three activity indexes. For each star, we computed also the global magnetic activity index that is proportional to the amplitude of the rotational modulation and is a proxy of the mean level of the surface magnetic activity. We detected activity cycles in 67 stars. Secondary cycles were also detected in 32 stars. The lack of correlation between PcycP_{ cyc} and ProtP_{ rot} suggest that these stars belong to the Transitional Branch and that the dynamo acting in these stars is different from the solar one. This statement is also supported by the analysis of the butterfly diagrams. We computed the Spearman correlation coefficient rSr_{ S} between PcycP_{ cyc}, and different stellar parameters. We found that PcycP_{ cyc} is uncorrelated with all the investigated parameters. The index is positively correlated with the convective turn-over time-scale, the magnetic diffusivity time-scale τdiff\tau_{ diff}, and the dynamo number DND_{ N}, whereas it is anti-correlated with the effective temperature TeffT_{ eff}, the photometric shear ΔΩphot\Delta\Omega_{\rm phot} and the radius RCR_{ C} at which the convective zone is located. We found that PcycP_{ cyc} is about constant and that decreases with the stellare age in the range 4-95 Myr. We investigated the magnetic activity of AB Dor A by merging ASAS time-series with previous long-term photometric data. We estimated the length of the AB Dor A primary cycle as Pcyc=16.78±2yrP_{ cyc} = 16.78 \pm 2 \rm yr.Comment: 19 pages , 15 figures, accepte

    The Impact of Demographic Variables on Differentiation of Self During the Course of Counseling

    Get PDF
    Bowen\u27s natural systems theory has been identified as a foundational theory in learning of family processes (Miller, Anderson, & Keala, 2004). Despite the importance of this theory to the counseling profession, there is a lack of research examining the moderators of Bowen\u27s key construct, differentiation of self. There are few studies that explore the effect of demographic variables on levels of differentiation of self. There is also a lack of literature regarding the impact of these demographic moderators on an individual\u27s ability to increase their level of differentiation of self through counseling. This study investigated the impact of counseling on levels of differentiation of self and the moderating role of various demographic variables on differentiation in an adult clinical population. Participants were adults recruited from a community mental health center in northwestern Pennsylvania at their initial presentation for counseling services. At the initial counseling session demographic questionnaires and Differentiation of Self Inventory-Revised (DSI-R) were administered with a follow-up administration of the DSI-R was conducted three months later. The results indicated a significant increase in overall differentiation of self, as well as in DSI-R subscale scores of Emotional Reactivity and I Position. The study also found that changes in differentiation of self varied as a function of age, with the most change occurring for younger (18-25 year old) participants; no other demographic variables were related to changes in differentiation of self. Potential implications for future research and potential explanations for these results are discussed

    RACE-OC Project: Rotation and variability in the open cluster M11 (NGC6705)

    Full text link
    Rotation and magnetic activity are intimately linked in main-sequence stars of G or later spectral types. The presence and level of magnetic activity depend on stellar rotation, and rotation itself is strongly influenced by strength and topology of the magnetic fields. Open clusters represent especially useful targets to investigate the rotation/activity/age connection. The open cluster M11 has been studied as a part of the RACE-OC project (Rotation and ACtivity Evolution in Open Clusters), which is aimed at exploring the evolution of rotation and magnetic activity in the late-type members of open clusters with different ages. Photometric observations of the open cluster M11 were carried out in June 2004 using LOAO 1m telescope. The rotation periods of the cluster members are determined by Fourier analysis of photometric data time series. We further investigated the relations between the surface activity, characterized by the light curve amplitude, and rotation. We have discovered a total of 75 periodic variables in the M11 FoV, of which 38 are candidate cluster members. Specifically, among cluster members we discovered 6 early-type, 2 eclipsing binaries and 30 bona-fide single periodic late-type variables. Considering the rotation periods of 16 G-type members of the almost coeval 200-Myr M34 cluster, we could determine the rotation period distribution from a more numerous sample of 46 single G stars at an age of about 200-230 Myr and determine a median rotation period P=4.8d. A comparison with the younger M35 cluster (~150 Myr) and with the older M37 cluster (~550 Myr) shows that G stars rotate slower than younger M35 stars and faster than older M37 stars. The measured variation of the median rotation period is consistent with the scenario of rotational braking of main-sequence spotted stars as they age.Comment: Accepted by Astronomy and Astrophysics on Dec 15, 200

    Evidence from stellar rotation of enhanced disc dispersal: (I) The case of the triple visual system BD-21 1074 in the β\beta Pictoris association

    Full text link
    The early stage of stellar evolution is characterized by a star-disc locking mechanism. The disc-locking prevents the star to spin its rotation up, and its timescale depends on the disc lifetime. Some mechanisms can significantly shorten this lifetime, allowing a few stars to start spinning up much earlier than other stars. In the present study, we aim to investigate how the properties of the circumstellar environment can shorten the disc lifetime. We have identified a few multiple stellar systems, composed of stars with similar masses, which belong to associations with a known age. Since all parameters that are responsible for the rotational evolution, with the exception of environment properties and initial stellar rotation, are similar for all components, we expect that significant differences among the rotation periods can only arise from differences in the disc lifetimes. A photometric timeseries allowed us to measure the rotation periods of each component, while high-resolution spectra provided us with the fundamental parameters, vsiniv\sin{i} and chromospheric line fluxes. The rotation periods of the components differ significantly, and the component B, which has a closer companion C, rotates faster than the more distant and isolated component A. We can ascribe the rotation period difference to either different initial rotation periods or different disc-locking phases arising from the presence of the close companion C. In the specific case of BD-21 1074, the second scenario seems to be more favored. In our hypothesis of different disc-locking phase, any planet orbiting this star is likely formed very rapidly owing to a gravitational instability mechanism, rather than core accretion. Only a large difference of initial rotation periods alone could account for the observed period difference, leaving comparable disc lifetimes.Comment: Accepted by Astronomy & Astrophysics on July 31, 2014; Pages 12, Figs.

    Lower limit for differential rotation in members of young loose stellar associations

    Get PDF
    Surface differential rotation (SDR) plays a key role in dynamo models. SDR estimates are therefore essential for constraining theoretical models. We measure a lower limit to SDR in a sample of solar-like stars belonging to young associations with the aim of investigating how SDR depends on global stellar parameters in the age range (4-95 Myr). The rotation period of a solar-like star can be recovered by analyzing the flux modulation caused by dark spots and stellar rotation. The SDR and the latitude migration of dark-spots induce a modulation of the detected rotation period. We employ long-term photometry to measure the amplitude of such a modulation and to compute the quantity DeltaOmega_phot =2p/P_min -2pi/P_max that is a lower limit to SDR. We find that DeltaOmega_phot increases with the stellar effective temperature and with the global convective turn-over time-scale tau_c. We find that DeltaOmega_phot is proportional to Teff^2.18pm 0.65 in stars recently settled on the ZAMS. This power law is less steep than those found by previous authors, but closest to recent theoretical models. We find that DeltaOmega_phot steeply increases between 4 and 30 Myr and that itis almost constant between 30 and 95 Myr in a 1 M_sun star. We find also that the relative shear increases with the Rossby number Ro. Although our results are qualitatively in agreement with hydrodynamical mean-field models, our measurements are systematically higher than the values predicted by these models. The discrepancy between DeltaOmega_phot measurements and theoretical models is particularly large in stars with periods between 0.7 and 2 d. Such a discrepancy, together with the anomalous SDR measured by other authors for HD 171488 (rotating in 1.31 d), suggests that the rotation period could influence SDR more than predicted by the models.Comment: 23 pages, 15 figures, 5 tables,accepted by Astronomy and Astrophysic

    Ground state of two unlike charged colloids: An analogy with ionic bonding

    Full text link
    In this letter, we study the ground state of two spherical macroions of identical radius, but asymmetric bare charge ((Q_{A}>Q_{B})). Electroneutrality of the system is insured by the presence of the surrounding divalent counterions. Using Molecular Dynamics simulations within the framework of the primitive model, we show that the ground state of such a system consists of an overcharged and an undercharged colloid. For a given macroion separation the stability of these ionized-like states is a function of the difference ((\sqrt{N_{A}}-\sqrt{N_{B}})) of neutralizing counterions (N_{A}) and (N_{B}). Furthermore the degree of ionization, or equivalently, the degree of overcharging, is also governed by the distance separation of the macroions. The natural analogy with ionic bonding is briefly discussed.Comment: published versio
    corecore