699 research outputs found
A Theory for High- Superconductors Considering Inhomogeneous Charge Distribution
We propose a general theory for the critical and pseudogap
temperature dependence on the doping concentration for high- oxides,
taking into account the charge inhomogeneities in the planes. The well
measured experimental inhomogeneous charge density in a given compound is
assumed to produce a spatial distribution of local . These differences
in the local charge concentration is assumed to yield insulator and metallic
regions, possibly in a stripe morphology. In the metallic region, the
inhomogeneous charge density yields also spatial distributions of
superconducting critical temperatures and zero temperature gap
. For a given sample, the measured onset of vanishing gap
temperature is identified as the pseudogap temperature, that is, , which
is the maximum of all . Below , due to the distribution of
's, there are some superconducting regions surrounded by insulator or
metallic medium. The transition to a superconducting state corresponds to the
percolation threshold among the superconducting regions with different
's. To model the charge inhomogeneities we use a double branched
Poisson-Gaussian distribution. To make definite calculations and compare with
the experimental results, we derive phase diagrams for the BSCO, LSCO and YBCO
families, with a mean field theory for superconductivity using an extended
Hubbard Hamiltonian. We show also that this novel approach provides new
insights on several experimental features of high- oxides.Comment: 7 pages, 5 eps figures, corrected typo
Giant Gravitons - with Strings Attached (III)
We develop techniques to compute the one-loop anomalous dimensions of
operators in the super Yang-Mills theory that are dual to open
strings ending on boundstates of sphere giant gravitons. Our results, which are
applicable to excitations involving an arbitrary number of open strings,
generalize the single string results of hep-th/0701067. The open strings we
consider carry angular momentum on an S embedded in the S of the
AdSS background. The problem of computing the one loop anomalous
dimensions is replaced with the problem of diagonalizing an interacting Cuntz
oscillator Hamiltonian. Our Cuntz oscillator dynamics illustrates how the
Chan-Paton factors for open strings propagating on multiple branes can arise
dynamically.Comment: 66 pages; v2: improved presentatio
Optimal modelling and experimentation for the improved sustainability of microfluidic chemical technology design
Optimization of the dynamics and control of chemical processes holds the promise of improved sustainability for chemical technology by minimizing resource wastage. Anecdotally, chemical plant may be substantially over designed, say by 35-50%, due to designers taking account of uncertainties by providing greater flexibility. Once the plant is commissioned, techniques of nonlinear dynamics analysis can be used by process systems engineers to recoup some of this overdesign by optimization of the plant operation through tighter control. At the design stage, coupling the experimentation with data assimilation into the model, whilst using the partially informed, semi-empirical model to predict from parametric sensitivity studies which experiments to run should optimally improve the model. This approach has been demonstrated for optimal experimentation, but limited to a differential algebraic model of the process. Typically, such models for online monitoring have been limited to low dimensions.
Recently it has been demonstrated that inverse methods such as data assimilation can be applied to PDE systems with algebraic constraints, a substantially more complicated parameter estimation using finite element multiphysics modelling. Parametric sensitivity can be used from such semi-empirical models to predict the optimum placement of sensors to be used to collect data that optimally informs the model for a microfluidic sensor system. This coupled optimum modelling and experiment procedure is ambitious in the scale of the modelling problem, as well as in the scale of the application - a microfluidic device. In general, microfluidic devices are sufficiently easy to fabricate, control, and monitor that they form an ideal platform for developing high dimensional spatio-temporal models for simultaneously coupling with experimentation.
As chemical microreactors already promise low raw materials wastage through tight control of reagent contacting, improved design techniques should be able to augment optimal control systems to achieve very low resource wastage. In this paper, we discuss how the paradigm for optimal modelling and experimentation should be developed and foreshadow the exploitation of this methodology for the development of chemical microreactors and microfluidic sensors for online monitoring of chemical processes. Improvement in both of these areas bodes to improve the sustainability of chemical processes through innovative technology. (C) 2008 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved
Theory of the Diamagnetism Above the Critical Temperature for Cuprates
Recently experiments on high critical temperature superconductors has shown
that the doping levels and the superconducting gap are usually not uniform
properties but strongly dependent on their positions inside a given sample.
Local superconducting regions develop at the pseudogap temperature () and
upon cooling, grow continuously. As one of the consequences a large diamagnetic
signal above the critical temperature () has been measured by different
groups. Here we apply a critical-state model for the magnetic response to the
local superconducting domains between and and show that the
resulting diamagnetic signal is in agreement with the experimental results.Comment: published versio
On the statistical significance of the conductance quantization
Recent experiments on atomic-scale metallic contacts have shown that the
quantization of the conductance appears clearly only after the average of the
experimental results. Motivated by these results we have analyzed a simplified
model system in which a narrow neck is randomly coupled to wide ideal leads,
both in absence and presence of time reversal invariance. Based on Random
Matrix Theory we study analytically the probability distribution for the
conductance of such system. As the width of the leads increases the
distribution for the conductance becomes sharply peaked close to an integer
multiple of the quantum of conductance. Our results suggest a possible
statistical origin of conductance quantization in atomic-scale metallic
contacts.Comment: 4 pages, Tex and 3 figures. To be published in PR
Marginal deformation of N=4 SYM and Penrose limits with continuum spectrum
We study the Penrose limit about a null geodesic with 3 equal angular momenta
in the recently obtained type IIB solution dual to an exactly marginal
-deformation of N=4 SYM. The resulting background has non-trivial NS
3-form flux as well as RR 5- and 3-form fluxes. We quantise the light-cone
Green-Schwarz action and show that it exhibits a continuum spectrum. We show
that this is related to the dynamics of a charged particle moving in a Landau
plane with an extra interaction induced by the deformation. We interpret the
results in the dual N=1 SCFT.Comment: 26 pages, 2 figures; v2: typos corrected, field theory interpretation
extende
Thermal Giant Graviton with Non-commutative Dipole Field
Using the type II near-extremal 3D-branes solution we apply the T-duality and
smeared twist to construct the supergravity backgrounds which dual to the 4D
finite temperature non-commutative dipole field theories. We first consider the
zero-temperature system in which, depending on the property of dipole vectors
it may be N=2, N=1 or N=0 theory. We investigate the rotating D3-brane
configurations moving on the spactimes and show that, for the cases of N=2 and
N =1 the rotating D3-brane could be blowed up to the stable spherical
configuration which is called as giant graviton and has a less energy than the
point-like graviton. The giant graviton configuration is stable only if its
angular momentum was less than a critical value of which is an increasing
function of the dipole strength. For the case of non-supersymmetric theory,
however, the spherical configuration has a larger energy than the point-like
graviton. We also find that the dipole field always render the dual giant
graviton to be more stable than the point-like graviton. The relation of dual
giant graviton energy with its angular momentum, which in the AdS/CFT
correspondence being the operator anomalous dimension is obtained. We
furthermore show that the temperature does not change the property of the giant
graviton, while it will render the dual giant graviton to be unstable.Comment: Latex 20 pages, add comments about BPS bound below (3.8
Non-holomorphic multi-matrix gauge invariant operators based on Brauer algebra
We present an orthogonal basis of gauge invariant operators constructed from
some complex matrices for the free matrix field, where operators are expressed
with the help of Brauer algebra. This is a generalisation of our previous work
for a signle complex matrix. We also discuss the matrix quantum mechanics
relevant to N=4 SYM on S^{3} times R. A commuting set of conserved operators
whose eigenstates are given by the orthogonal basis is shown by using enhanced
symmetries at zero coupling.Comment: 29 pages, typos corrected, references adde
Universality of Nonperturbative Effects in c<1 Noncritical String Theory
Nonperturbative effects in c<1 noncritical string theory are studied using
the two-matrix model. Such effects are known to have the form fixed by the
string equations but the numerical coefficients have not been known so far.
Using the method proposed recently, we show that it is possible to determine
the coefficients for (p,q) string theory. We find that they are indeed finite
in the double scaling limit and universal in the sense that they do not depend
on the detailed structure of the potential of the two-matrix model.Comment: 17 page
Entropy of near-extremal black holes in AdS_5
We construct the microstates of near-extremal black holes in AdS_5 x S^5 as
gases of defects distributed in heavy BPS operators in the dual SU(N)
Yang-Mills theory. These defects describe open strings on spherical D3-branes
in the S^5, and we show that they dominate the entropy by directly enumerating
them and comparing the results with a partition sum calculation. We display new
decoupling limits in which the field theory of the lightest open strings on the
D-branes becomes dual to a near-horizon region of the black hole geometry. In
the single-charge black hole we find evidence for an infrared duality between
SU(N) Yang-Mills theories that exchanges the rank of the gauge group with an
R-charge. In the two-charge case (where pairs of branes intersect on a line),
the decoupled geometry includes an AdS_3 factor with a two-dimensional CFT
dual. The degeneracy in this CFT accounts for the black hole entropy. In the
three-charge case (where triples of branes intersect at a point), the decoupled
geometry contains an AdS_2 factor. Below a certain critical mass, the
two-charge system displays solutions with naked timelike singularities even
though they do not violate a BPS bound. We suggest a string theoretic
resolution of these singularities.Comment: LaTeX; v2: references and a few additional comments adde
- …