4,810 research outputs found

    Mesoscopic Transport Through Ballistic Cavities: A Random S-Matrix Theory Approach

    Full text link
    We deduce the effects of quantum interference on the conductance of chaotic cavities by using a statistical ansatz for the S matrix. Assuming that the circular ensembles describe the S matrix of a chaotic cavity, we find that the conductance fluctuation and weak-localization magnitudes are universal: they are independent of the size and shape of the cavity if the number of incoming modes, N, is large. The limit of small N is more relevant experimentally; here we calculate the full distribution of the conductance and find striking differences as N changes or a magnetic field is applied.Comment: 4 pages revtex 3.0 (2-column) plus 2 postscript figures (appended), hub.pam.94.

    Wave Scattering through Classically Chaotic Cavities in the Presence of Absorption: An Information-Theoretic Model

    Full text link
    We propose an information-theoretic model for the transport of waves through a chaotic cavity in the presence of absorption. The entropy of the S-matrix statistical distribution is maximized, with the constraint =αn =\alpha n: n is the dimensionality of S, and 0α1,α=0(1)0\leq \alpha \leq 1, \alpha =0(1) meaning complete (no) absorption. For strong absorption our result agrees with a number of analytical calculations already given in the literature. In that limit, the distribution of the individual (angular) transmission and reflection coefficients becomes exponential -Rayleigh statistics- even for n=1. For n1n\gg 1 Rayleigh statistics is attained even with no absorption; here we extend the study to α<1\alpha <1. The model is compared with random-matrix-theory numerical simulations: it describes the problem very well for strong absorption, but fails for moderate and weak absorptions. Thus, in the latter regime, some important physical constraint is missing in the construction of the model.Comment: 4 pages, latex, 3 ps figure

    f(R)f(R) global monopole revisited

    Full text link
    In this paper the f(R)f(R) global monopole is reexamined. We provide an exact solution for the modified field equations in the presence of a global monopole for regions outside its core, generalizing previous results. Additionally, we discuss some particular cases obtained from this solution. We consider a setup consisting of a possible Schwarzschild black hole that absorbs the topological defect, giving rise to a static black hole endowed with a monopole's charge. Besides, we demonstrate how the asymptotic behavior of the Higgs field far from the monopole's core is shaped by a class of spacetime metrics which includes those ones analyzed here. In order to assess the gravitational properties of this system, we analyse the geodesic motion of both massive and massless test particles moving in the vicinity of such configuration. For the material particles we set the requirements they have to obey in order to experience stable orbits. On the other hand, for the photons we investigate how their trajectories are affected by the gravitational field of this black hole.Comment: 16 pages, 1 figure and 1 table. Minor changes to match published version in EPJ

    Conductance of Disordered Wires with Symplectic Symmetry: Comparison between Odd- and Even-Channel Cases

    Full text link
    The conductance of disordered wires with symplectic symmetry is studied by numerical simulations on the basis of a tight-binding model on a square lattice consisting of M lattice sites in the transverse direction. If the potential range of scatterers is much larger than the lattice constant, the number N of conducting channels becomes odd (even) when M is odd (even). The average dimensionless conductance g is calculated as a function of system length L. It is shown that when N is odd, the conductance behaves as g --> 1 with increasing L. This indicates the absence of Anderson localization. In the even-channel case, the ordinary localization behavior arises and g decays exponentially with increasing L. It is also shown that the decay of g is much faster in the odd-channel case than in the even-channel case. These numerical results are in qualitative agreement with existing analytic theories.Comment: 4 page

    Asymptotic behavior of the conductance in disordered wires with perfectly conducting channels

    Full text link
    We study the conductance of disordered wires with unitary symmetry focusing on the case in which mm perfectly conducting channels are present due to the channel-number imbalance between two-propagating directions. Using the exact solution of the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation for transmission eigenvalues, we obtain the average and second moment of the conductance in the long-wire regime. For comparison, we employ the three-edge Chalker-Coddington model as the simplest example of channel-number-imbalanced systems with m=1m = 1, and obtain the average and second moment of the conductance by using a supersymmetry approach. We show that the result for the Chalker-Coddington model is identical to that obtained from the DMPK equation.Comment: 20 pages, 1 figur

    Reflection of light from a disordered medium backed by a phase-conjugating mirror

    Get PDF
    This is a theoretical study of the interplay of optical phase-conjugation and multiple scattering. We calculate the intensity of light reflected by a phase-conjugating mirror when it is placed behind a disordered medium. We compare the results of a fully phase-coherent theory with those from the theory of radiative transfer. Both methods are equivalent if the dwell time \tau_{dwell} of a photon in the disordered medium is much larger than the inverse of the frequency shift 2\Delta\omega acquired at the phase-conjugating mirror. When \tau_{dwell} \Delta\omega < 1, in contrast, phase coherence drastically affects the reflected intensity. In particular, a minimum in the dependence of the reflectance on the disorder strength disappears when \Delta\omega is reduced below 1/\tau_{dwell}. The analogies and differences with Andreev reflection of electrons at the interface between a normal metal and a superconductor are discussed.Comment: 27 pages RevTeX with 11 figures included with psfi

    Ballistic Transport Through Chaotic Cavities: Can Parametric Correlations and the Weak Localization Peak be Described by a Brownian Motion Model?

    Full text link
    A Brownian motion model is devised on the manifold of S-matrices, and applied to the calculation of conductance-conductance correlations and of the weak localization peak. The model predicts that (i) the correlation function in BB has the same shape and width as the weak localization peak; (ii) the functions behave as 1O(B2)\propto 1-{\cal O}(B^2), thus excluding a linear line shape; and (iii) their width increases as the square root of the number of channels in the leads. Some of these predictions agree with experiment and with other calculations only in the limit of small BB and a large number of channels.Comment: 5 pages revtex (twocolumn

    Conductance Fluctuations in a Disordered Double-Barrier Junction

    Full text link
    We consider the effect of disorder on coherent tunneling through two barriers in series, in the regime of overlapping transmission resonances. We present analytical calculations (using random-matrix theory) and numerical simulations (on a lattice) to show that strong mode-mixing in the inter-barrier region induces mesoscopic fluctuations in the conductance GG of universal magnitude e2/he^2/h for a symmetric junction. For an asymmetric junction, the root-mean-square fluctuations depend on the ratio ν\nu of the two tunnel resistances according to rmsG=(4e2/h)β1/2ν(1+ν)2{rms} G = (4e^2/h)\beta^{-1/2} \nu(1+\nu)^{-2}, where β=1(2)\beta = 1 (2) in the presence (absence) of time-reversal symmetry.Comment: 12 pages, REVTeX-3.0, 2 figures, submitted to Physical Review

    Conductance Fluctuations in Disordered Wires with Perfectly Conducting Channels

    Full text link
    We study conductance fluctuations in disordered quantum wires with unitary symmetry focusing on the case in which the number of conducting channels in one propagating direction is not equal to that in the opposite direction. We consider disordered wires with N+mN+m left-moving channels and NN right-moving channels. In this case, mm left-moving channels become perfectly conducting, and the dimensionless conductance gg for the left-moving channels behaves as gmg \to m in the long-wire limit. We obtain the variance of gg in the diffusive regime by using the Dorokhov-Mello-Pereyra-Kumar equation for transmission eigenvalues. It is shown that the universality of conductance fluctuations breaks down for m0m \neq 0 unless NN is very large.Comment: 6 pages, 2 figure
    corecore