The conductance of disordered wires with symplectic symmetry is studied by
numerical simulations on the basis of a tight-binding model on a square lattice
consisting of M lattice sites in the transverse direction. If the potential
range of scatterers is much larger than the lattice constant, the number N of
conducting channels becomes odd (even) when M is odd (even). The average
dimensionless conductance g is calculated as a function of system length L. It
is shown that when N is odd, the conductance behaves as g --> 1 with increasing
L. This indicates the absence of Anderson localization. In the even-channel
case, the ordinary localization behavior arises and g decays exponentially with
increasing L. It is also shown that the decay of g is much faster in the
odd-channel case than in the even-channel case. These numerical results are in
qualitative agreement with existing analytic theories.Comment: 4 page