97 research outputs found

    Effects of dimensionality and anisotropy on the Holstein polaron

    Full text link
    We apply weak-coupling perturbation theory and strong-coupling perturbation theory to the Holstein molecular crystal model in order to elucidate the effects of anisotropy on polaron properties in D dimensions. The ground state energy is considered as a primary criterion through which to study the effects of anisotropy on the self-trapping transition, the self-trapping line associated with this transition, and the adiabatic critical point. The effects of dimensionality and anisotropy on electron-phonon correlations and polaronic mass enhancement are studied, with particular attention given to the polaron radius and the characteristics of quasi-1D and quasi-2D structures. Perturbative results are confirmed by selected comparisons with variational calculations and quantum Monte Carlo data

    Mass Renormalization in the Su-Schrieffer-Heeger Model

    Full text link
    This study of the one dimensional Su-Schrieffer-Heeger model in a weak coupling perturbative regime points out the effective mass behavior as a function of the adiabatic parameter ωπ/J\omega_{\pi}/J, ωπ\omega_{\pi} is the zone boundary phonon energy and JJ is the electron band hopping integral. Computation of low order diagrams shows that two phonons scattering processes become appreciable in the intermediate regime in which zone boundary phonons energetically compete with band electrons. Consistently, in the intermediate (and also moderately antiadiabatic) range the relevant mass renormalization signals the onset of a polaronic crossover whereas the electrons are essentially undressed in the fully adiabatic and antiadiabatic systems. The effective mass is roughly twice as much the bare band value in the intermediate regime while an abrupt increase (mainly related to the peculiar 1D dispersion relations) is obtained at ωπ2J\omega_{\pi}\sim \sqrt{2}J.Comment: To be published in Phys.Rev.B - 3 figure

    Calculation of excited polaron states in the Holstein model

    Full text link
    An exact diagonalization technique is used to investigate the low-lying excited polaron states in the Holstein model for the infinite one-dimensional lattice. For moderate values of the adiabatic ratio, a new and comprehensive picture, involving three excited (coherent) polaron bands below the phonon threshold, is obtained. The coherent contribution of the excited states to both the single-electron spectral density and the optical conductivity is evaluated and, due to the invariance of the Hamiltonian under the space inversion, the two are shown to contain complementary information about the single-electron system at zero temperature. The chosen method reveals the connection between the excited bands and the renormalized local phonon excitations of the adiabatic theory, as well as the regime of parameters for which the electron self-energy has notable non-local contributions. Finally, it is shown that the hybridization of two polaron states allows a simple description of the ground and first excited state in the crossover regime.Comment: 12 pages, 9 figures, submitted to PR

    Repulsive Casimir-Polder forces from cosmic strings

    Full text link
    We investigate the Casimir-Polder force acting on a polarizable microparticle in the geometry of a straight cosmic string. In order to develop this analysis we evaluate the electromagnetic field Green tensor on the imaginary frequency axis. The expression for the Casimir-Polder force is derived in the general case of anisotropic polarizability. In dependence of the eigenvalues for the polarizability tensor and of the orientation of its principal axes, the Casimir-Polder force can be either repulsive or attractive. Moreover, there are situations where the force changes the sign with separation. We show that for an isotropic polarizability tensor the force is always repulsive. At large separations between the microparticle and the string, the force varies inversely as the fifth power of the distance. In the non-retarded regime, corresponding to separations smaller than the relevant transition wavelengths, the force decays as the inverse fourth power of the distance. In the case of anisotropic polarizability, the dependence of the Casimir-Polder potential on the orientation of the polarizability tensor principal axes also leads to the moment of force acting on the particle.Comment: 16 pages, 2 figure

    Semiclassical Strings, Dipole Deformations of N=1 SYM and Decoupling of KK Modes

    Full text link
    In this paper we investigate the recently found γ\gamma-deformed Maldacena-Nunez background by studying the behavior of different semiclassical string configurations. This background is conjectured to be dual to dipole deformations of N=1\N=1 SYM. We compare our results to those in the pure Maldacena-Nunez background and show that the energies of our string configurations are higher than in the undeformed background. Thinking in the lines of (hep-th/0505100) we argue that this is an evidence for better decoupling of the Kaluza-Klein modes from the pure SYM theory excitations. Moreover we are able to find a limit of the background in which the string energy is independent of γ\gamma, these strings are interpreted as corresponding to pure gauge theory effects.Comment: 31 pages, references added, new solutions in Section 7 presented, an appendix added, to appear in JHE

    Polaron features of the one-dimensional Holstein Molecular Crystal Model

    Full text link
    The polaron features of the one-dimensional Holstein Molecular Crystal Model are investigated by improving a variational method introduced recently and based on a linear superposition of Bloch states that describe large and small polaron wave functions. The mean number of phonons, the polaron kinetic energy, the electron-phonon local correlation function, and the ground state spectral weight are calculated and discussed. A crossover regime between large and small polaron for any value of the adiabatic parameter ω0/t\omega_0/t is found and a polaron phase diagram is proposed.Comment: 12 pages, 2 figure

    On the perturbative chiral ring for marginally deformed N=4 SYM theories

    Get PDF
    For \cal{N}=1 SU(N) SYM theories obtained as marginal deformations of the \cal{N}=4 parent theory we study perturbatively some sectors of the chiral ring in the weak coupling regime and for finite N. By exploiting the relation between the definition of chiral ring and the effective superpotential we develop a procedure which allows us to easily determine protected chiral operators up to n loops once the superpotential has been computed up to (n-1) order. In particular, for the Lunin-Maldacena beta-deformed theory we determine the quantum structure of a large class of operators up to three loops. We extend our procedure to more general Leigh-Strassler deformations whose chiral ring is not fully understood yet and determine the weight-two and weight-three sectors up to two loops. We use our results to infer general properties of the chiral ring.Comment: LaTex, 40 pages, 4 figures, uses JHEP3; v2: minor correction

    Metal-insulator transition in the one-dimensional Holstein model at half filling

    Full text link
    We study the one-dimensional Holstein model with spin-1/2 electrons at half-filling. Ground state properties are calculated for long chains with great accuracy using the density matrix renormalization group method and extrapolated to the thermodynamic limit. We show that for small electron-phonon coupling or large phonon frequency, the insulating Peierls ground state predicted by mean-field theory is destroyed by quantum lattice fluctuations and that the system remains in a metallic phase with a non-degenerate ground state and power-law electronic and phononic correlations. When the electron-phonon coupling becomes large or the phonon frequency small, the system undergoes a transition to an insulating Peierls phase with a two-fold degenerate ground state, long-range charge-density-wave order, a dimerized lattice structure, and a gap in the electronic excitation spectrum.Comment: 6 pages (LaTex), 10 eps figure

    Quantum Monte Carlo and variational approaches to the Holstein model

    Full text link
    Based on the canonical Lang-Firsov transformation of the Hamiltonian we develop a very efficient quantum Monte Carlo algorithm for the Holstein model with one electron. Separation of the fermionic degrees of freedom by a reweighting of the probability distribution leads to a dramatic reduction in computational effort. A principal component representation of the phonon degrees of freedom allows to sample completely uncorrelated phonon configurations. The combination of these elements enables us to perform efficient simulations for a wide range of temperature, phonon frequency and electron-phonon coupling on clusters large enough to avoid finite-size effects. The algorithm is tested in one dimension and the data are compared with exact-diagonalization results and with existing work. Moreover, the ideas presented here can also be applied to the many-electron case. In the one-electron case considered here, the physics of the Holstein model can be described by a simple variational approach.Comment: 18 pages, 11 Figures, v2: one typo correcte

    Polaron formation for a non-local electron-phonon coupling: A variational wave-function study

    Full text link
    We introduce a variational wave-function to study the polaron formation when the electronic transfer integral depends on the relative displacement between nearest-neighbor sites giving rise to a non-local electron-phonon coupling with optical phonon modes. We analyze the ground state properties such as the energy, the electron-lattice correlation function, the phonon number and the spectral weight. Variational results are found in good agreement with analytic weak-coupling perturbative calculations and exact numerical diagonalization of small clusters. We determine the polaronic phase diagram and we find that the tendency towards strong localization is hindered from the pathological sign change of the effective next-nearest-neighbor hopping.Comment: 11 page
    corecore