1,097 research outputs found
Society for immunotherapy of cancer (SITC) statement on the proposed changes to the common rule
The Common Rule is a set of ethical principles that provide guidance on the management of human subjects taking part in biomedical and behavioral research in the United States. The elements of the Common Rule were initially developed in 1981 following a revision of the Declaration of Helsinki in 1975. Most academic facilities follow the Common Rule in the regulation of clinical trials research. Recently, the government has suggested a revision of the Common Rule to include more contemporary and streamlined oversight of clinical research. In this commentary, the leadership of the Society for Immunotherapy of Cancer (SITC) provides their opinion on this plan. While the Society recognizes the considerable contribution of clinical research in supporting progress in tumor immunotherapy and supports the need for revisions to the Common Rule, there is also some concern over certain elements which may restrict access to biospecimens and clinical data at a time when high throughput technologies, computational biology and assay standardization is allowing major advances in understanding cancer biology and providing potential predictive biomarkers of immunotherapy response. The Society values its professional commitment to patients for improving clinical outcomes with tumor immunotherapy and supports continued discussion with all stakeholders before implementing changes to the Common Rule in order to ensure maximal patient protections while promoting continued clinical research at this historic time in cancer research
Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion
Toxoplasma (toxoplasmosis) and Plasmodium (malaria) use unique secretory organelles for migration, cell invasion, manipulation of host cell functions, and cell egress. In particular, the apical secretory micronemes and rhoptries of apicomplexan parasites are essential for successful host infection. New findings reveal that the contents of these organelles, which are transported through the endoplasmic reticulum (ER) and Golgi, also require the parasite endosome-like system to access their respective organelles. In this review, we discuss recent findings that demonstrate that these parasites reduced their endosomal system and modified classical regulators of this pathway for the biogenesis of apical organelles
Expression of macrophage-lymphocyte Fc receptors in Madin-Darby canine kidney cells: polarity and transcytosis differ for isoforms with or without coated pit localization domains.
Abstract. Many cells of the immune system and certain epithelia express receptors for the Fc domain of IgG (FcR). On mouse macrophages and lymphocytes, two distinct receptor isoforms have been identified, designated FcRII-B1 and FcRII-B2. The isoforms are identical except for an in-frame insertion of 47 amino acids in the cytoplasmic tail of FcRII-B1 that blocks its ability to be internalized by clathrin-coated pits. We have recently found that at least one IgG-transporting epithelium, namely placental syncytial trophoblasts, expresses transcripts encoding a receptor similar or identical to macrophage-lymphocyte FcRII. To determine whether FcRU of hematopoietic cells might also function as a transcytotic receptor if expressed in epithelial cells, FcRII-B1 and-B2 were transfected int
Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells
available in PMC 2011 November 01.Cellular RNA levels are determined by the interplay of RNA production, processing and degradation. However, because most studies of RNA regulation do not distinguish the separate contributions of these processes, little is known about how they are temporally integrated. Here we combine metabolic labeling of RNA at high temporal resolution with advanced RNA quantification and computational modeling to estimate RNA transcription and degradation rates during the response of mouse dendritic cells to lipopolysaccharide. We find that changes in transcription rates determine the majority of temporal changes in RNA levels, but that changes in degradation rates are important for shaping sharp 'peaked' responses. We used sequencing of the newly transcribed RNA population to estimate temporally constant RNA processing and degradation rates genome wide. Degradation rates vary significantly between genes and contribute to the observed differences in the dynamic response. Certain transcripts, including those encoding cytokines and transcription factors, mature faster. Our study provides a quantitative approach to study the integrative process of RNA regulation.Human Frontier Science Program (Strasbourg, France)Howard Hughes Medical InstituteBurroughs Wellcome Fund (Career Award at the Scientific Interface
Genetic control of cobalamin binding in normal and mutant cells: Assignment of the gene for 5-methyltetrahydrofolate:L-homocysteine S-methyltransferase to human chromosome 1
Self-adjuvanting polymer-peptide conjugates as therapeutic vaccine candidates against cervical cancer
Dendrimers are structurally well-defined, synthetic polymers with sizes and physicochemical properties often resembling those of biomacromolecules (e.g. proteins). As a result they are promising candidates for peptide-based vaccine delivery platforms. Herein, we established a synthetic pathway to conjugate a human papillomavirus (HPV) E7 protein-derived peptide antigen to a star-polymer to create a macromolecular vaccine candidate to treat HPV-related cancers. These conjugates were able to reduce tumor growth and eradicate E7-expressing TC-1 tumors in mice after a single immunization, without the help of any external adjuvant
A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8+ T Cells
The most effective strategy for protection against intracellular infections such as Leishmania is
vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live
vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for longterm protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very
efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to
efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal ntigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine
Vaccine delivery by penetratin: mechanism of antigen presentation by dendritic cells
Cell-penetrating peptides (CPP) or membrane-translocating peptides such as penetratin from Antennapedia homeodomain or TAT from human immunodeficiency virus are useful vectors for the delivery of protein antigens or their cytotoxic (Tc) or helper (Th) T cell epitopes to antigen-presenting cells. Mice immunized with CPP containing immunogens elicit antigen-specific Tc and/or Th responses and could be protected from tumor challenges. In the present paper, we investigate the mechanism of class I and class II antigen presentation of ovalbumin covalently linked to penetratin (AntpOVA) by bone marrow-derived dendritic cells with the use of biochemical inhibitors of various pathways of antigen processing and presentation. Results from our study suggested that uptake of AntpOVA is via a combination of energy-independent (membrane fusion) and energy-dependent pathways (endocytosis). Once internalized by either mechanism, multiple tap-dependent or independent antigen presentation pathways are accessed while not completely dependent on proteasomal processing but involving proteolytic trimming in the ER and Golgi compartments. Our study provides an understanding on the mechanism of antigen presentation mediated by CPP and leads to greater insights into future development of vaccine formulations
Transcriptional Reprogramming of CD11b+Esamhi Dendritic Cell Identity and Function by Loss of Runx3
Classical dendritic cells (cDC) are specialized antigen-presenting cells mediating immunity and tolerance. cDC cell-lineage decisions are largely controlled by transcriptional factor regulatory cascades. Using an in vivo cell-specific targeting of Runx3 at various stages of DC lineage development we show that Runx3 is required for cell-identity, homeostasis and function of splenic Esamhi DC. Ablation of Runx3 in DC progenitors led to a substantial decrease in splenic CD4+/CD11b+ DC. Combined chromatin immunoprecipitation sequencing and gene expression analysis of purified DC-subsets revealed that Runx3 is a key gene expression regulator that facilitates specification and homeostasis of CD11b+Esamhi DC. Mechanistically, loss of Runx3 alters Esamhi DC gene expression to a signature characteristic of WT Esamlow DC. This transcriptional reprogramming caused a cellular change that diminished phagocytosis and hampered Runx3-/- Esamhi DC capacity to prime CD4+ T cells, attesting to the significant role of Runx3 in specifying Esamhi DC identity and function
Chemokine Transfer by Liver Sinusoidal Endothelial Cells Contributes to the Recruitment of CD4+ T Cells into the Murine Liver
Leukocyte adhesion and transmigration are central features governing immune
surveillance and inflammatory reactions in body tissues. Within the liver
sinusoids, chemokines initiate the first crucial step of T-cell migration into
the hepatic tissue. We studied molecular mechanisms involved in endothelial
chemokine supply during hepatic immune surveillance and liver inflammation and
their impact on the recruitment of CD4+ T cells into the liver. In the murine
model of Concanavalin A-induced T cell-mediated hepatitis, we showed that
hepatic expression of the inflammatory CXC chemokine ligands (CXCL)9 and
CXCL10 strongly increased whereas homeostatic CXCL12 significantly decreased.
Consistently, CD4+ T cells expressing the CXC chemokine receptor (CXCR)3
accumulated within the inflamed liver tissue. In histology, CXCL9 was
associated with liver sinusoidal endothelial cells (LSEC) which represent the
first contact site for T-cell immigration into the liver. LSEC actively
transferred basolaterally internalized CXCL12, CXCL9 and CXCL10 via clathrin-
coated vesicles to CD4+ T cells leading to enhanced transmigration of CXCR4+
total CD4+ T cells and CXCR3+ effector/memory CD4+ T cells, respectively in
vitro. LSEC-expressed CXCR4 mediated CXCL12 transport and blockage of
endothelial CXCR4 inhibited CXCL12-dependent CD4+ T-cell transmigration. In
contrast, CXCR3 was not involved in the endothelial transport of its ligands
CXCL9 and CXCL10. The clathrin-specific inhibitor chlorpromazine blocked
endothelial chemokine internalization and CD4+ T-cell transmigration in vitro
as well as migration of CD4+ T cells into the inflamed liver in vivo.
Moreover, hepatic accumulation of CXCR3+ CD4+ T cells during T cell-mediated
hepatitis was strongly reduced after administration of chlorpromazine. These
data demonstrate that LSEC actively provide perivascularly expressed
homeostatic and inflammatory chemokines by CXCR4- and clathrin-dependent
intracellular transport mechanisms thereby contributing to the hepatic
recruitment of CD4+ T-cell populations during immune surveillance and liver
inflammation
- …
