93 research outputs found

    Interview with Barbara and James Meek

    Get PDF
    Oral history interview with Barbara Meek and James Meek. The interview was conducted on October 25, 2007, by Elaine Graybill, as part of the Illinois State University Oral History Project. James Meek was a grandson of David Felmley, who was president of Illinois State Normal University for thirty years, from 1900 to 1930.https://ir.library.illinoisstate.edu/soh/1005/thumbnail.jp

    Pathways Forward for Indigenous Language Reclamation: Engaging Indigenous Epistemology and Learning by Observing and Pitching in to Family and Community Endeavors

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155958/1/modl12652.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155958/2/modl12652_am.pd

    Biomimetic Transparent Eye Protection Inspired by the Carapace of an Ostracod (Crustacea)

    Get PDF
    In this study we mimic the unique, transparent protective carapace (shell) of myodocopid ostracods, through which their compound eyes see, to demonstrate that the carapace ultrastructure also provides functions of strength and protection for a relatively thin structure. The bulk ultrastructure of the transparent window in the carapace of the relatively large, pelagic cypridinid (Myodocopida) Macrocypridina castanea was mimicked using the thin film deposition of dielectric materials to create a transparent, 15 bi-layer material. This biomimetic material was subjected to the natural forces withstood by the ostracod carapace in situ, including scratching by captured prey and strikes by water-borne particles. The biomimetic material was then tested in terms of its extrinsic (hardness value) and intrinsic (elastic modulus) response to indentation along with its scratch resistance. The performance of the biomimetic material was compared with that of a commonly used, anti-scratch resistant lens and polycarbonate that is typically used in the field of transparent armoury. The biomimetic material showed the best scratch resistant performance, and significantly greater hardness and elastic modulus values. The ability of biomimetic material to revert back to its original form (post loading), along with its scratch resistant qualities, offers potential for biomimetic eye protection coating that could enhance material currently in use

    Differential relative sulfation of keratan sulfate glycosaminoglycan in the chick cornea during embryonic development

    Get PDF
    Purpose. To investigate structural remodeling of the developing corneal stroma concomitant with changing sulfation patterns of keratan sulfate (KS) glycosaminoglycan (GAG) epitopes during embryogenesis and the onset of corneal transparency. Methods. Developing chick corneas were obtained from embryonic day (E)12 to E18 of incubation. Extracellular matrix composition and collagen fibril spacing were evaluated by synchrotron x-ray diffraction, hydroxyproline assay, ELISA (with antibodies against lesser and more highly sulfated KS), and transmission electron microscopy with specific proteoglycan staining. Results. A significant relative increase in highly sulfated KS epitope labeling occurred with respect to hydroxyproline content in the final week of chick development, as mean collagen interfibrillar distance decreased. Small KS PG filaments increased in frequency with development and were predominantly fibril associated. Conclusions. The accumulation of highly sulfated KS during the E12 to E18 timeframe could serve to fine tune local matrix hydration and collagen fibril spacing during corneal growth, as gross dehydration and compaction of the stroma progress through the action of the nascent endothelial pump

    Incorporating New Technologies Into Toxicity Testing and Risk Assessment: Moving From 21st Century Vision to a Data-Driven Framework

    Get PDF
    Based on existing data and previous work, a series of studies is proposed as a basis toward a pragmatic early step in transforming toxicity testing. These studies were assembled into a data-driven framework that invokes successive tiers of testing with margin of exposure (MOE) as the primary metric. The first tier of the framework integrates data from high-throughput in vitro assays, in vitro-to-in vivo extrapolation (IVIVE) pharmacokinetic modeling, and exposure modeling. The in vitro assays are used to separate chemicals based on their relative selectivity in interacting with biological targets and identify the concentration at which these interactions occur. The IVIVE modeling converts in vitro concentrations into external dose for calculation of the point of departure (POD) and comparisons to human exposure estimates to yield a MOE. The second tier involves short-term in vivo studies, expanded pharmacokinetic evaluations, and refined human exposure estimates. The results from the second tier studies provide more accurate estimates of the POD and the MOE. The third tier contains the traditional animal studies currently used to assess chemical safety. In each tier, the POD for selective chemicals is based primarily on endpoints associated with a proposed mode of action, whereas the POD for nonselective chemicals is based on potential biological perturbation. Based on the MOE, a significant percentage of chemicals evaluated in the first 2 tiers could be eliminated from further testing. The framework provides a risk-based and animal-sparing approach to evaluate chemical safety, drawing broadly from previous experience but incorporating technological advances to increase efficiency

    Large Proteoglycan Complexes and Disturbed Collagen Architecture in the Corneal Extracellular Matrix of Mucopolysaccharidosis Type VII (Sly Syndrome)

    Get PDF
    Purpose. Deficiencies in enzymes involved in proteoglycan (PG) turnover underlie a number of rare mucopolysaccharidoses (MPS), investigations of which can considerably aid understanding of the roles of PGs in corneal matrix biology. Here, the authors analyze novel pathologic changes in MPS VII (Sly syndrome) to determine the nature of PG-collagen associations in stromal ultrastructure. Methods. Transmission electron microscopy and electron tomography were used to investigate PG-collagen architectures and interactions in a cornea obtained at keratoplasty from a 22-year-old man with MPS VII, which was caused by a compound heterozygous mutation in the GUSB gene. Results. Transmission electron microscopy showed atypical morphology of the epithelial basement membrane and Bowman's layer in MPS VII. Keratocytes were packed with cytoplasmic vacuoles containing abnormal glycosaminoglycan (GAG) material, and collagen fibrils were thinner than in normal cornea and varied considerably throughout anterior (14–32 nm), mid (13–42 nm), and posterior (17–39 nm) regions of the MPS VII stroma. PGs viewed in three dimensions were striking in appearance in that they were significantly larger than PGs in normal cornea and formed highly extended linkages with multiple collagen fibrils. Conclusions. Cellular changes in the MPS VII cornea resemble those in other MPS. However, the wide range of collagen fibril diameters throughout the stroma and the extensive matrix presence of supranormal-sized PG structures appear to be unique features of this disorder. The findings suggest that the accumulation of stromal chondroitin-, dermatan-, and heparan-sulfate glycosaminoglycans in the absence of β-glucuronidase-mediated degradation can modulate collagen fibrillogenesis

    Stem cell-derived macrophages as a new platform for studying host-pathogen interactions in livestock

    Get PDF
    BACKGROUND: Infectious diseases of farmed and wild animals pose a recurrent threat to food security and human health. The macrophage, a key component of the innate immune system, is the first line of defence against many infectious agents and plays a major role in shaping the adaptive immune response. However, this phagocyte is a target and host for many pathogens. Understanding the molecular basis of interactions between macrophages and pathogens is therefore crucial for the development of effective strategies to combat important infectious diseases. RESULTS: We explored how porcine pluripotent stem cells (PSCs) can provide a limitless in vitro supply of genetically and experimentally tractable macrophages. Porcine PSC-derived macrophages (PSCdMs) exhibited molecular and functional characteristics of ex vivo primary macrophages and were productively infected by pig pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV), two of the most economically important and devastating viruses in pig farming. Moreover, porcine PSCdMs were readily amenable to genetic modification by CRISPR/Cas9 gene editing applied either in parental stem cells or directly in the macrophages by lentiviral vector transduction. CONCLUSIONS: We show that porcine PSCdMs exhibit key macrophage characteristics, including infection by a range of commercially relevant pig pathogens. In addition, genetic engineering of PSCs and PSCdMs affords new opportunities for functional analysis of macrophage biology in an important livestock species. PSCs and differentiated derivatives should therefore represent a useful and ethical experimental platform to investigate the genetic and molecular basis of host-pathogen interactions in pigs, and also have wider applications in livestock. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12915-021-01217-8

    Stem cell-derived porcine macrophages as a new platform for studying host-pathogen interactions

    Get PDF
    BACKGROUND: Infectious diseases of farmed and wild animals pose a recurrent threat to food security and human health. The macrophage, a key component of the innate immune system, is the first line of defence against many infectious agents and plays a major role in shaping the adaptive immune response. However, this phagocyte is a target and host for many pathogens. Understanding the molecular basis of interactions between macrophages and pathogens is therefore crucial for the development of effective strategies to combat important infectious diseases. RESULTS: We explored how porcine pluripotent stem cells (PSCs) can provide a limitless in vitro supply of genetically and experimentally tractable macrophages. Porcine PSC-derived macrophages (PSCdMs) exhibited molecular and functional characteristics of ex vivo primary macrophages and were productively infected by pig pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV), two of the most economically important and devastating viruses in pig farming. Moreover, porcine PSCdMs were readily amenable to genetic modification by CRISPR/Cas9 gene editing applied either in parental stem cells or directly in the macrophages by lentiviral vector transduction. CONCLUSIONS: We show that porcine PSCdMs exhibit key macrophage characteristics, including infection by a range of commercially relevant pig pathogens. In addition, genetic engineering of PSCs and PSCdMs affords new opportunities for functional analysis of macrophage biology in an important livestock species. PSCs and differentiated derivatives should therefore represent a useful and ethical experimental platform to investigate the genetic and molecular basis of host-pathogen interactions in pigs, and also have wider applications in livestock. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12915-021-01217-8

    Mutagenesis Objective Search and Selection Tool (MOSST): an algorithm to predict structure-function related mutations in proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functionally relevant artificial or natural mutations are difficult to assess or predict if no structure-function information is available for a protein. This is especially important to correctly identify functionally significant non-synonymous single nucleotide polymorphisms (nsSNPs) or to design a site-directed mutagenesis strategy for a target protein. A new and powerful methodology is proposed to guide these two decision strategies, based only on conservation rules of physicochemical properties of amino acids extracted from a multiple alignment of a protein family where the target protein belongs, with no need of explicit structure-function relationships.</p> <p>Results</p> <p>A statistical analysis is performed over each amino acid position in the multiple protein alignment, based on different amino acid physical or chemical characteristics, including hydrophobicity, side-chain volume, charge and protein conformational parameters. The variances of each of these properties at each position are combined to obtain a global statistical indicator of the conservation degree of each property. Different types of physicochemical conservation are defined to characterize relevant and irrelevant positions. The differences between statistical variances are taken together as the basis of hypothesis tests at each position to search for functionally significant mutable sites and to identify specific mutagenesis targets. The outcome is used to statistically predict physicochemical consensus sequences based on different properties and to calculate the amino acid propensities at each position in a given protein. Hence, amino acid positions are identified that are putatively responsible for function, specificity, stability or binding interactions in a family of proteins. Once these key functional positions are identified, position-specific statistical distributions are applied to divide the 20 common protein amino acids in each position of the protein's primary sequence into a group of functionally non-disruptive amino acids and a second group of functionally deleterious amino acids.</p> <p>Conclusions</p> <p>With this approach, not only conserved amino acid positions in a protein family can be labeled as functionally relevant, but also non-conserved amino acid positions can be identified to have a physicochemically meaningful functional effect. These results become a discriminative tool in the selection and elaboration of rational mutagenesis strategies for the protein. They can also be used to predict if a given nsSNP, identified, for instance, in a genomic-scale analysis, can have a functional implication for a particular protein and which nsSNPs are most likely to be functionally silent for a protein. This analytical tool could be used to rapidly and automatically discard any irrelevant nsSNP and guide the research focus toward functionally significant mutations. Based on preliminary results and applications, this technique shows promising performance as a valuable bioinformatics tool to aid in the development of new protein variants and in the understanding of function-structure relationships in proteins.</p

    F-Spondin/spon1b Expression Patterns in Developing and Adult Zebrafish

    Get PDF
    F-spondin, an extracellular matrix protein, is an important player in embryonic morphogenesis and CNS development, but its presence and role later in life remains largely unknown. We generated a transgenic zebrafish in which GFP is expressed under the control of the F-spondin (spon1b) promoter, and used it in combination with complementary techniques to undertake a detailed characterization of the expression patterns of F-spondin in developing and adult brain and periphery. We found that F-spondin is often associated with structures forming long neuronal tracts, including retinal ganglion cells, the olfactory bulb, the habenula, and the nucleus of the medial longitudinal fasciculus (nMLF). F-spondin expression coincides with zones of adult neurogenesis and is abundant in CSF-contacting secretory neurons, especially those in the hypothalamus. Use of this new transgenic model also revealed F-spondin expression patterns in the peripheral CNS, notably in enteric neurons, and in peripheral tissues involved in active patterning or proliferation in adults, including the endoskeleton of zebrafish fins and the continuously regenerating pharyngeal teeth. Moreover, patterning of the regenerating caudal fin following fin amputation in adult zebrafish was associated with F-spondin expression in the blastema, a proliferative region critical for tissue reconstitution. Together, these findings suggest major roles for F-spondin in the CNS and periphery of the developing and adult vertebrate
    • …
    corecore