7 research outputs found

    Semantic concepts in product usage monitoring and analysis

    Get PDF
    Nowadays, complex electronic products, such as DVD players or mobile phones, offer a huge number of functions. As a consequence of the complexity of the devices, customers often have problems to use such products effectively. For example, it has been observed that an increasing number of technically sound products is returned due to, e.g., interaction problems. One possible root cause of this problem is that most product development processes are still too technologydriven, i.e., potential users are brought into contact with the product only at a very late stage. If early consumer tests are carried out, then these typically aim at abstract market evaluations rather than formulating concrete requirements towards the functionality of the product. As a result, products often have little meaning or relevance to the customers. Therefore, we need better ways to involve users in the development of such products. This can be achieved by observing product usage in the field and incorporating the gained knowledge in the product creation process. This paper proposes an approach to build automatic observation modules into products, collect usage data, and analyze these data by means of process mining techniques exploiting a novel semantic link between observation and analysis. This link yields two main benefits: (i) it adds focus to the potential mass of captured data items; and (ii) it reduces the need for extensive post-processing of the collected data. Together, these two benefits speed up the information feedback cycle towards development

    Improving product usage monitoring and analysis with semantic concepts

    No full text
    Nowadays, complex electronic products, such as DVD players or mobile phones, offer a huge number of functions. As a consequence of the complexity of the devices, customers often have problems to use such products effectively. For example, it has been observed that an increasing number of technically sound products is returned due to, e.g., interaction problems. One possible root cause of this problem is that most product development processes are still too technology-driven, i.e., potential users are brought into contact with the product only at a very late stage. If early consumer tests are carried out, then these typically aim at abstract market evaluations rather than formulating concrete requirements towards the functionality of the product. As a result, products often have little meaning or relevance to the customers. Therefore, we need better ways to involve users in the development of such products. This can be achieved by observing product usage in the field and incorporating the gained knowledge in the product creation process. This paper proposes an approach to build automatic observation modules into products, collect usage data, and analyze these data by means of process mining techniques exploiting a novel semantic link between observation and analysis. This link yields two main benefits: (i) it adds focus to the potential mass of captured data items; and (ii) it reduces the need for extensive post-processing of the collected data. Together with the framework’s flexibility to change observation modules remotely on-the-fly, these benefits speed up the information feedback cycle towards development

    Impact of International Nosocomial Infection Control Consortium (INICC) strategy on central line-associated bloodstream infection rates in the intensive care units of 15 developing countries

    No full text
    BACKGROUND. The International Nosocomial Infection Control Consortium (INICC) was established in 15 developing countries to reduce infection rates in resource-limited hospitals by focusing on education and feedback of outcome surveillance (infection rates) and process surveillance (adherence to infection control measures). We report a time-sequence analysis of the effectiveness of this approach in reducing rates of central line-associated bloodstream infection (CLABSI) and associated deaths in 86 intensive care units with a minimum of 6-month INICC membership. METHODS. Pooled CLABSI rates during the first 3 months (baseline) were compared with rates at 6-month intervals during the first 24 months in 53,719 patients (190,905 central line-days). Process surveillance results at baseline were compared with intervention period data. RESULTS. During the first 6 months, CLABSI incidence decreased by 33% (from 14.5 to 9.7 CLABSIs per 1,000 central line-days). Over the first 24 months there was a cumulative reduction from baseline of 54% (from 16.0 to 7.4 CLABSIs per 1,000 central line-days; relative risk, 0.46 [95% confidence interval, 0.33-0.63]; P < .001). The number of deaths in patients with CLABSI decreased by 58%. During the intervention period, hand hygiene adherence improved from 50% to 60% (P < .001); the percentage of intensive care units that used maximal sterile barriers at insertion increased from 45% to 85% (P < .001 ), that adopted chlorhexidine for antisepsis increased from 7% to 27% (P=.018 ), and that sought to remove unneeded catheters increased from 37% to 83% (P=.004); and the duration of central line placement decreased from 4.1 to 3.5 days (P < .001). CONCLUSIONS. Education, performance feedback, and outcome and process surveillance of CLABSI rates significantly improved infection control adherence, reducing the CLABSI incidence by 54% and the number of CLABSI-associated deaths by 58% in INICC hospitals during the first 2 years. © 2010 by The Society for Healthcare Epidemiology of America. All rights reserved
    corecore