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Abstract. Nowadays, complex electronic products, such as DVD players or mo-
bile phones, offer a huge number of functions. As a consequence of the complex-
ity of the devices, customers often have problems to use such products effectively.
For example, it has been observed that an increasing number of technically sound
products is returned due to, e.g., interaction problems. One possible root cause of
this problem is that most product development processes are still too technology-
driven, i.e., potential users are brought into contact with the product only at a very
late stage. If early consumer tests are carried out, then these typically aim at ab-
stract market evaluations rather than formulating concrete requirements towards
the functionality of the product. As a result, products often have little meaning
or relevance to the customers. Therefore, we need better ways to involve users
in the development of such products. This can be achieved by observing product
usage in the field and incorporating the gained knowledge in the product creation
process. This paper proposes an approach to build automatic observation mod-
ules into products, collect usage data, and analyze these data by means of process
mining techniques exploiting a novel semantic link between observation and anal-
ysis. This link yields two main benefits: (i) it adds focus to the potential mass of
captured data items; and (ii) it reduces the need for extensive post-processing of
the collected data. Together, these two benefits speed up the information feedback
cycle towards development.

1 Introduction

Complex electronic products, both for private consumers and professional users, are
hard to specify and design as no real information is available about the potential cus-
tomers’ expectations and needs. Meeting these expectations is, however, crucial as
nowadays customers can choose among a wide variety of products, and will more easily
reject products that do not suit their needs. A symptom of this problem is, for example,
that an increasing number of technically sound products is being returned [1]. At the
same time, it is not possible to perform lengthy user studies as there is a strong pressure
on ‘time to market’. Moreover, it is difficult to gradually improve products by incor-
porating user feedback from the field as often only very few generations of the same
product are made (to be replaced by new, more innovative products). In short, customers



are becoming more demanding, while product development must be done with fewer
iterations.

One way to ensure that products will suit the needs of their potential customers is
to involve them as early as possible in the development process. This can be achieved
by letting potential users test early prototypes containing important functions, and to
incrementally incorporate the gained knowledge into the product under development.
However, to make this approach applicable in practice, two conditions need to be ful-
filled.

1. It needs to be feasible to perform the tests in the first place, i.e., it should fit into
today’s challenging development cycles.

2. The collected test data needs to be useful, i.e., valid (“Does this reflect our potential
customers?”) and relevant (“Is this what we want to know?”).

To address the first condition, the test data needs to be collected and fed back to the
development team as automatically as possible. As we will demonstrate later, our ap-
proach is supported by a tool chain that allows for seamless data collection, processing
and analysis with a high degree of automation. Addressing the second condition is more
difficult as it depends on a variety of parameters. For example, to obtain valid data one
needs to choose test users that reflect the actual target group. However, one common
problem is that early user tests are often performed in non-representative environments,
and that people do not behave normally as they feel observed. Our approach allows
for data collection from testers using the product in their habitual environment. For
example, test products are given to users who unpack, install and use the devices in
their home environment. The products themselves record usage information and auto-
matically deliver it to the respective development unit in the company. This way, tests
can easily run several weeks, and thus cover different phases of use [2]. For example,
the long-term usage behavior is often quite different from the behavior in the first few
hours after unpacking the product. Finally, to ensure that the right data is collected, we
allow the observation logic to be changed dynamically by the development team, i.e.,
while the test is running. This way, truly iterative data collection and analysis becomes
possible. Furthermore, a visual approach to specifying the observation logic is taken
to make it accessible to the (mostly non-technical) people that have an interest in the
data collection process. These are, for example, product managers, quality engineers,
interaction designers, or user interface developers.

With the aim to further increase both the feasibility and the usefulness of product
usage observation, we extend the above-described approach by an important aspect: in
this paper, we establish a semantic link between the observation and analysis phase.
More precisely, we allow to semantically annotate the logged data during the specifica-
tion of the observation logic, and these semantic annotations are preserved and actively
leveraged in the analysis phase (by semantic process mining techniques). So-called on-
tologies [3], which are representations of a set of concepts within a domain and the
relationships between those concepts, is used to define these semantic aspects. To allow
different views on the data, multiple ontologies can be used to “tag” the observed data
with orthogonal concepts at the same time. As a result of the logged data being pre-
processed and structured using high-level concepts, there is no need for extensive and
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time-consuming post-processing of raw data. Instead, the data can be analyzed directly
and in a more efficient way. An ongoing case-study within a large Dutch electronics
company shows the applicability of the approach. First results indicate that, on the one
hand, semantic information can indeed reduce the need for extensive post-processing
and, on the other hand, improve the quality of product usage information.

The remainder of this paper is organized as follows. After pointing at related work
(Section 2), we show an overview of the approach and describe how ontologies are used
to link the different system components (Section 3). Then, we describe the observation
system (Section 4) and potential analysis approaches for semantic data (Section 5) in
more detail. Afterwards, we introduce an industrial case study that is currently per-
formed (Section 6). The paper ends with an outline of possible future steps and a con-
clusion (Section 7).

2 Related work

Uses of remote product monitoring have been reported before as described in [4–8].
However, these approaches assume information stakeholders capable of programming
and willing to use programming paradigms to achieve the sought-after data. Also, our
approach towards “product observation”, as we call it, differs from [4–8] in the sense
that the integration of observation functionality into the target system is tackled and
described in a software engineering process which is, in our opinion, necessary for
widespread use. On the technical level we rely on the proven model-driven engineering
approach, but also try to apply more agile modeling techniques like model interpre-
tation [9] that allow for dynamic adaptation of runtime systems without the need for
dynamic compilation support. While previous work describes our product observation
approach in more detail [25–27], this paper focuses on the novel semantic link between
observation and analysis, and we explain the extension of visually-defined observation
specifications by semantic concepts. In this sense, the paper is also related to the areas
of visual languages [10] and domain-driven design [11].

The idea of using semantics to perform analysis of processes is not new [12–16].
In 2002, Casati et al. [12] introduced the HPPM intelligent Process Data Warehouse
(PDD), in which taxonomies are used to add semantics to process execution data and,
therefore, support more business-like analysis for the provided reports. The work in [13]
is a follow-up of the work in [12]. It presents a complete architecture for the analy-
sis, prediction, monitoring, control and optimization of process executions in Business
Process Management Systems (BPMSs). This set of tools is called Business Process
Intelligence (BPI) suite. The main difference of these two approaches with respect to
ours is that (i) taxonomies are used to capture the semantic aspects (in our case, ontolo-
gies are used), and (ii) these taxonomies are flat (i.e., no subsumption relations between
concepts are supported). Hepp et al. [14] proposes merging Semantic Web, Semantic
Web Services, and Business Process Management (BPM) techniques to build Seman-
tic BPM systems. This visionary paper pinpoints the role of ontologies (and reasoners)
while performing semantic analysis. The papers by Sell et al. [16] and O’Riain et al. [15]
are also related, because the authors use ontologies to provide for the semantic analy-
sis of systems. The main difference is the kind of analysis supported, since their work
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can be seen as the extension of OLAP tools with semantics. The work in [15] shows
how to use semantics to enhance the business analysis function of detecting the core
business of companies. This analysis is based on the so-called Q10 forms. The work
in [17] explains how the analysis performed by process mining techniques can bene-
fit from semantic information. Process mining techniques can provide a wide variety
of feedback information about the usage of a system. This feedback is based on the
data registered in event logs (like the performed tasks, the users, timestamps etc.) [18].
Actually, our approach is based on the semantic process mining techniques discussed
in [17, 19]. However, the works in [17, 19] do not present any real-life application of the
semantic process mining tools. In this sense, our paper is the first one to use semantic
process mining techniques to analyze processes based on product usage.

3 Approach

Direct product information (i.e. the recording of the actual usage of a system) is po-
tentially of use to a large group of professions, not even only in the industrial context:
knowledge engineers, product managers, requirements engineers, developers, interac-
tion designers, and other information stakeholders can benefit from such information.
In the following we will use the term domain expert to refer to a representative of this
group. Note that the members of this group are traditionally not so much involved in
the actual development process of a product, but have a rather modest influence during
some phases of the product creation process only. Especially in the development of in-
novative products, this strict separation is partially released as the expertise of domain
experts is needed in the product creation process. These experts are the target users for
our approach: initially, they might have a vague understanding about what should be
observed in the product to answer open quesitons, but iteratively it is possible to map
issues to observable items within the product, and finally, to obtain comprehensible and
reliable information.

In the following, first the general approach is explained (Section 3.1) and it is shown
how an automatic chaining of observation and analysis supports iterations. Then, we
describe how ontologies are used in the context of product observation and analysis
(Section 3.2) to further improve the data quality.

3.1 Overview

The system we propose is a combination of a logging framework and a process min-
ing tool. On top of that, one or more ontologies are used to link collected data items,
hence, to connect observation and analysis on the information level. Figure 1 shows an
overview of the system infrastructure, depicting both the flow of tasks and the neces-
sary tools. The figure shows that ontologies, as the main semantic linking of data, are
connected to three steps of the flow. Therefore the definition and maintenance of one or
more ontologies should be a concurrent task that accompanies the depicted flow. What
is captured in this semantic layer shall be described in the second part of the approach
section.
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The first step of the actual flow is the observation specification: domain experts
visually define what information should be observed in the product and how this in-
formation should be represented in the central data storage. Then, concepts from the
ontology are intergrated into the basic information processing flow. This task is done
within an easy, but formal visual language. The outcome are observation specifications
which are used to automatically and remotely instruct observation modules situated in
products given to testers at home. These modules start collecting field data in the second
step: observation. The semantic annotations of the observation specifications enable the
observation module to categorize the captured data accordingly on-the-fly. This results
in log data with an inherent semantic structure. The third step of the flow (data con-
version) deals with an extraction of log data stored in a data base. A special tool called
ProMimport [20] condenses the log data into an XML file that is directly usable in the
final analysis step. The conversion makes use of a newly developed plug-in specialized
to the needs of the semantically annotated product usage log data. In the final step (data
analysis) the data is processed using various (semantic) process mining plug-ins which
provide different views on the aggregated data. These plug-ins are part of the ProM
tool [21]. This last step offers the possibility to extract the essence out of a potentially
huge data set. Furthermore, it helps to present this information in a comprehensive and
directly usable way.

Fig. 1. System overview

Although the automatic processing chain from observation to analysis consists of
several independent parts, it now becomes clear that a common connection is feasible
by using ontologies for a semantic content structure. The whole process is of a strongly
iterative nature. Cycles, especially between definition of ontology, observation specifi-
cation, observation, and analysis, are not only expected but encouraged to achieve the
most reliable and accurate final picture of product usage.
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For instance, during the observation phase, the domain expert might come across
unexpected information that needs a special treatment and the extension of the con-
nected ontology with new concepts. These changes can be carried out directly and lead
to an immediate improvement of the quality of collected data.

3.2 Ontologies

Ontologies [3] define the set of shared concepts necessary for the analysis, and formal-
ize their relationships and properties. Ontology elements are organized in a directed
graph and there are several formalisms to build ontologies such as OWL [22] and
WSML [23]. In our approach, we are using WSML to formally define concepts be-
cause this is the language supported by the semantic process mining tools. Currently,
we employ ontologies in a rather syntactic manner, whereas the full semantic power of
ontologies can leverage even better analysis and will be part of a future version.

In principle, there are two connections between both systems: ontologies on the
conceptual level and log data on the information level. Ontology concepts appear in the
log data whenever a semantically annotated event is logged. Indeed, this link between
conceptual level and information level is the goal of the approach. Obviously, a careful
specification of one or more ontologies is crucial, also for the communication between
the people involved in product monitoring.

General

ExpertContext

Product-
specific

Observation-
specific

Experiment-
specific

Domain-
specific

Ontologies

Domain-
independent

Ontologies

Failure-
specific

Tester-
specific

Fig. 2. Different types of ontologies can be identified for product usage observation

In our product usage observation approach we identify three types of ontologies:
general, context and expert (cf. Figure 2). These types can be characterized as follows.

General General ontologies are domain-independent and they are used to capture con-
cepts that are neither product not experiment related. An example for this type of
ontology is an observation-specific ontology that contains concepts relating to the
data collection process, but does not say anything about the product that is ob-
served, or the kind of analysis that should be performed. General ontologies are
expected to be highly re-usable for a couple of experiments without changes.

6



Context Context ontologies provide information about the setting of an experiment. In
other words, they might characterize certain aspects of the product to be observed
(i.e., product-specific), the habitual context of actual product use, or the people that
perform the tests (i.e., tester-specific). The applicability of these ontologies may
be limited to a certain domain or product group, but they can be re-used across
different experiments within that scope.

Expert Expert ontologies are related to specific analysis purposes and are bound to
expert views on a product, a single study or specific categories of collected data.
They may be needed to answer particular questions for a certain experiment (i.e.,
experiment-specific). However, we can also think of certain domain-expert views,
such as the quality engineer focusing on product failures (i.e., failure-specific). In
principle, expert ontologies could be re-used across different product groups.

Fig. 3. Graphical representation of the Generic Observation Ontology (GOO) in the WSMT edi-
tor [24]

The differences between these three categories can be clarified by an example. Con-
sider the observation-specific ontology depicted in Figure 3, which concentrates on the
process of information collection itself. It contains concepts that help to distinguish
between ‘events’ and ‘status updates’ in the observation. The observation-specific on-
tology also captures the origin of such an event or status update, i.e., whether it is
user-initiated, system-initiated, or triggered by the observation system.
Events are atomic occurrences which may transport data. They are triggered by the ob-
served system, the user, or even by the observation system. Examples of events are user
interface actions, such as button clicks or menu selections (ObjectiveUserEvent), or
system notifications (SystemEvent). Other examples are notifications about an update
of the observation specification (ObservationEvent) and feedback actions initiated
by the user (SubjectiveUserEvent). Note that with respect to user events in this
paper we mostly consider objective user actions (i.e., related to actual product usage).
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However, in the observation-specific ontology we already distinguish subjective user
events, which relate to perceptions and feelings of the user orthogonally collected to
the actual usage process itself. We briefly outline the purpose and opportunities by
combining these objective and subjective data in Section 6.2.
In contrast, status updates are samples of a continuous stream of ever changing data.
Status updates have in most cases the distinctive nature of periodicity. For example, the
observation system triggers a certain hook to report the network activity or memory
usage every 10 seconds, or when it changed by a pre-determined amount. Thus, the
originally continuous stream of data is quantized. In addition, status updates can be
taken on demand, e.g. only when a certain system function is used, its performance is
observed.

While an observation-specific ontology formalizes properties of the data collection
process, the product- and experiment-specific ontologies both describe the content of
the collected data, i.e., their formalisms are dependent on the (product) context or ex-
pert domain, respectively. In the case of the product-specific ontology, details of the
product context like product features, hardware and software components, or interac-
tion capabilities are formalized. An excerpt of such an ontology is depicted in Figure 5.
Experiment-specific ontologies contain semantic concepts that are just relevant in the
scope of the experiment. For example, the product manager might want to find out to
which extent certain categories of functions are being used throughout the test period,
and for this she would create a custom view that groups these (product-specific) func-
tions into the desired classes.

Note that multiple ontologies are used because the semantic observation and analy-
sis is not done by one person alone. A team of domain experts should be able to work
together, and to benefit from each other’s insight into product usage. Therefore, many
(potentially orthogonal) views on the topic have to be combined in an efficient way.

4 Product usage observation

Product observation consists of two parts: (i) instrumentation of products to collect data,
and (ii) the possibility for remote and on-the-fly changes of data collection and process-
ing. The latter aspect emphasizes also the difference between logging and observation:
while logging collects as much information as possible for offline analysis, observa-
tion is an interactive process that happens mainly online. Observation tools enable a
continuous revision of collected information by means of real-time visualizations, and
accordingly, allow to constantly adapt observation mechanisms in order to refine the re-
sulting data, whereas logging has to rely on the initial guess on the amount of required
information. The consequence of traditional logging approaches are uncertainties that
do not match the idea of fast and reliable data.

Product observation tackles the first of the two introductory conditions (cf. Sec-
tion 1): observation enables the collection of product usage data. The incorporation of
semantic information into the process of observation specification and data collection
fulfills the second condition: the provision of meaningful information. The first part of
this section (Subsection 4.1) shows the architecture of our observation system and how
it works. The second part (Subsection 4.2) concentrates on the visual observation spec-
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ification language. This language enables the aforementioned stakeholders of product
information, such as the knowledge engineer, to “program” the observation system.

Fig. 4. Observation system architecture

4.1 Observation architecture

An observation system can be described as a layered architecture with three main parts:
(i) the authoring and analysis layer where information collection is specified and out-
comes are analyzed, (ii) the management and repository layer (MRL) acting as a mid-
dleware for specification and data storing, and (iii) the observation layer where the ac-
tual data is collected. Figure 4 shows an overview on the system and also what happens
during the specification and runtime phases. The domain expert specifies what should
be observed and how the acquired data should be represented in a visual language using
the graphical editor in Figure 5. This observation specification (OS) is then transferred
to a server on the MRL which in turn will distribute the OS to product instances. Those
product instances reside in the user’s home environment and connect via a communica-
tion channel, like the Internet, to the repository layer’s server. As soon as the product is
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configured based on an OS, the process of product usage observation starts, and the col-
lected and processed data is delivered back to the server on the MRL. This data stored
in the server can then be retrieved for analysis purposes.

We have developed the D’PUIS (Dynamic Product Usage Information System) as a
platform-specific realization of the approach [25]. This system consists of the following
parts: (i) a visual editor to specify OSs, (ii) a web application that distributes OSs and
provides storage for collected product data, and (iii) an observation module which is
integrated into product instances. An infrastructure connects these parts and enables an
automatic flow from observation specification to actual product usage data. Since the
focus of this paper is on semantic annotation and analysis of data, a detailed explanation
of system integration details is not provided but can be found in [26, 27]. The next
subsection describes the graphical editor and its visual language, which are part of the
system part in (i).

4.2 Visual language

In the context of semantically supported data collection, an interesting part of the ob-
servation system is the visual language being the place where semantic links between
data items are initially constructed. The visual language is a domain-specific language
for observation specification and is intended to be used by domain experts (cf. Fig-
ure 5). One of the crucial aspects is the abstraction from low-level programming and
system engineering matter. The language abstracts also from data base persistence, data
conversion, concurrency issues and the potential synchronization problems that arise
in large distributed systems. The language elements allow to connect data sources to
processing blocks, to cache data for aggregation and to export the acquired information
to the repository layer where it is stored and can be accessed for analysis (cf. Figure 4).

The first experiments with this kind of expressivity have been promising and a
huge amount of data was collected. However, as indicated earlier, the tremendous effort
needed to filter out the relevant information led to the conclusion that not only reduction
of data, but also a more elaborate linking between data items was needed. Therefore,
the visual language was extended in order to represent concepts from a linked ontology.
In practice, this link is maintained during data collection and processing until a data
item is finally stored as a log entry on the server. The simple addition of meta data, let it
be product-, observation- or experiment-related, helps in the analysis phase to classify
and categorize data according to the intended meaning (as expressed by the attached
concepts).

Figure 5 shows an illustrative example of the graphical editor that provides author-
ing support for the visual language. The semantic connections are visualized as rect-
angles with a dashed border connected to other blocks via equally dashed arrows. The
direction of the arrows expresses that semantic concept are attached to the flow of infor-
mation in the specified observation behavior. In the foreground of Figure 5, an excerpt
of the ontology is depicted which is used for the semantic annotations.

Data that is acquired in the described way is not only more meaningful, but also
it is self-contained. This is an important step forward as all the (usually implicit) in-
formation about the observation process, such as the characteristics of the observation
environment, and the nature of data sources, is explicitly stated in a machine-readable
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Fig. 5. Visual editor for observation specification with connected ontology, note the “travel” con-
cept being linked from ontology to observation specification in the background

form. In the analysis phase, specialized semantic process mining techniques can exploit
such information efficiently.

5 Semantic process mining

Semantic process mining uses semantic information to lift the analysis provided by cur-
rent process mining techniques to the conceptual level [17, 19]. Process mining tech-
niques support various types of analysis based on the behavior registered during the
execution of some process [18]. This behavior is registered in the so-called event logs.
These logs contain data about the steps (or tasks or activities) that have been performed,
by which performer, at which times, using which data fields, etc. In the setting of our
work, a step could be a functionality of a product that has been started by an end user, or
an answer to a feedback questionnaire. Based on the data in event logs, different types
of models can be automatically discovered by process mining techniques. One example
are models that show the control-flow structure of a given process. As an illustration,
Figure 6 depicts two automatically mined process models for an event log containing
test executions. These models actually both portray the typical order that users follow
while using certain products, but they reside on different levels of abstraction. As we
will explain later, the possibility to mine models on different levels of abstraction is one
of the benefits of using ontologies.
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Fig. 6. Two mined models for an event log generated by our system. Model (a) is made using all
events in the log and no semantic information. Model (b) provides a more abstract view of this
same process. This view is based on the semantic information in the log.

As can be seen in Figure 1, after the observation phase we need to convert and
analyze the data. In the remainder of this section, we first describe the data conversion
phase (Section 5.1) and then the data analysis phase (Section 5.2) in more detail.

5.1 Data Conversion

The process mining techniques are freely available in the ProM framework [21]. This
tool has a common input format, called Mining XML (MXML), which supports the
representation of the different elements in event logs. However, the MXML format
is purely syntactic. In other words, the process mining techniques cannot reason over
the concepts behind the labels in the MXML files because this notion is simply not
there. That is why semantic process mining techniques have been developed. They have
extended the MXML format in such a way that elements in these files can be annotated
with concepts in ontologies [17, 19]. This new format is called Semantically Annotated
MXML (SA-MXML). Furthermore, new semantic process mining plug-ins have been
developed to benefit from the extra semantic layer provided in the SA-MXML log.
In a nutshell, the SA-MXML format supports the linkage of syntactical elements in
the previously existing MXML format with one or more concepts in ontologies. As
explained in [19], this linkage is used by the semantic process mining tools to perform
subsumption reasoning and, therefore, provide for the analysis of event logs at different
conceptual levels.

ProMimport [20] supports the development of plug-ins to convert logs from differ-
ent (commercial) systems to the (SA-)MXML log format used by ProM. Just like ProM,
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ProMimport is also open-source and it is freely available at www.processmining.org.
We have developed a ProMimport plug-in that automatically extracts the recorded data
from the D’PUIS database and converts them to the SA-MXML format. Note that this
data conversion preserves the semantic annotations collected during the observation
phase for analysis.

5.2 Data Analysis

As indicated in [28], seven semantic process mining plug-ins have been added to the
ProM tool so far. From these, three are especially useful for our approach: Ontology
Abstraction Filter, Performance Metrics in Ontologies and Semantic LTL Checker.

The Ontology Abstraction Filter plug-in supports the mining of process models at
different levels of abstraction. The desired level of abstraction is determined by select-
ing or deselecting concepts linked to events (the actual instances of these concepts) in
logs. The selection is based on a view of the ontology that shows only the concepts (and
all of their super concepts) that are referenced in a log. Figure 6 illustrates this. Note that
the model in Figure 6 (b) has a higher level of abstraction than the model depicted in
Figure 6 (a). This is the case because, by using the Ontology Abstraction Filter plug-in,
we have mapped the events in the log to some of their super concepts. For instance, we
have aggregated all instances that link to some form of internet browsing (cf. ontology
in Figure 5) to the super concept IPTV#Browsing. This is possible because the use of
ontologies allow us to associate the concept browsing to some of the labels in the log.

The Performance Metrics in Ontologies provides feedback about (i) the processing
times of tasks (or events) and (ii) throughput times of process executions. In our ap-
proach, the feedback in (i) is particularly important because it indicates how much time
users typically spend in using certain functionalities of products. Moreover, this plug-in
also shows how frequently instances of a given concept have been performed. Figure 7
contains a screenshot of this plug-in in action. Note that the coloring of the concepts in
the ontology is based on the frequency of instances. From this graph, it is very intuitive
to spot that software functions (see entry for concept SW at the right-side table) are
more frequently used than hardware (see concept HW) ones.

The Semantic LTL Checker plug-in can be used to audit properties in the log. For
instance, we can use this plug-in to check if the end users are always answering some
feedback question after using certain functionalities. The novelty here is that these prop-
erties are defined based on the semantic annotations. So, the analysis and re-use of these
properties is more robust. All these semantic plug-ins use reasoners [28] to infer the
subsumption relations needed for the semantic analysis.

Finally, note that—due to its plug-able architecture—ProM can be easily extended
by custom analysis tools, tailored towards the needs of a specific experiment or domain.
This way, we can quickly add to the analysis capabilities while leveraging the existing
infrastructure (e.g., to efficiently load and process large logs including semantic anno-
tations).
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Fig. 7. Screenshot of the Performance Metrics in Ontologies semantic ProM plug-in. The current
view shows the frequencies of tasks linking to concepts.

6 Case Study

The application of semantic observation and analysis is currently being used in indus-
trial case-studies carried out with a large Dutch consumer electronics manufacturer. The
setting is a new product with a couple of innovative features being under development.
However, there is no reliable prior experience to assess whether the product is suitable
for the target market. Furthermore, information about customer preferences and expec-
tations is not available. Therefore, an unusually long and extensive conceptualization
phase within the product creation process was decided upon and this will be the gen-
eral study setting. To approach the problems outlined above, working prototypes of the
product, called demonstrators, are equipped with observation facilities and are given to
key testers. These demonstrator machines, once in use, deliver information about user
interaction to a central repository (cf. Section 4) that is accessible for analysis purposes.

In the following we first describe the general setup and current status of the case
study (Section 6.1) and then give an outlook on one particular aspect that we plan to
investigate in the context of this study, namely the combination of objective and subjec-
tive data (Section 6.2).
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6.1 General Setup

In a first study, over 800.000 data items were collected from demonstrator machines
world-wide. This showed the general applicability of our approach to distribute testing
machines in several countries and to remotely observe interaction with the systems. The
results helped to answer questions of domain experts about the usage of the demonstra-
tors. However, this study revealed huge difficulties to analyze this mass of atomic and
non-connected data. Learning from this prior study, a second study has been initiated to
explore the application of semantic meta-data within all phases of the flow. The prepa-
rations and setup of this study, which is currently in progress, can be briefly described
as follows.

A new high-level link (referring to semantic meta-information) between data collec-
tion and analysis has been introduced. To establish this link, the first step was to develop
the necessary ontologies. Together with domain experts inside the company we defined
a large product-specific ontology which is used in the observation specification (partly
displayed in Figure 5). An additional experiment-specific ontology is refined iteratively:
in the beginning, only few basic categories were defined by estimating important parts
in user-system interaction. After the first days of observation testing, the collected data
items were analyzed and the outcome of the analysis indicated a lot of activity in one
of the basic categories. Subsequently, this category could be refined to a set of about 30
subcategories. So, according to these first results, a more fine-grained view on the prod-
uct usage was enabled from then on. The generic observation ontology (cf. Figure 3)
is used as a support to distinguish events and status information coming from differ-
ent origins on a basic level. Demonstrator machines provided already first semantically
structured information which could be automatically processed by the system presented
in this paper. Extended analysis of the collected data will be performed as soon as this
second case study is completed (i.e., as soon as the experiment has finished). We expect
that, with the help of semantic meta-information, the resulting data become much more
comprehensible and lead to a better understanding of the product usage.

6.2 Opportunities in Combining Objective and Subjective Data

A very interesting aspect that we plan to investigate in the future is the combination
of objective and subjective field data. In this paper, we focused on objective data, i.e.,
usage data directly recorded by the product (key presses, browsing behavior etc.). How-
ever, first attempts have been made to display surveys on the screens of the observed
product according to the reported usage. Likewise, the observation system offers a pos-
sibility for user-initiated feedback. Data collected by these subjective measures are
stored in the same data base as the objective usage data, and they are also semantically
annotated (cf. the SubjectiveUserEvent concept in Figure 3). For instance, a ques-
tion about the usage of the wireless keyboard would be connected to the corresponding
ontology concept “wireless keyboard”.

Given the availability of both objective and subjective data, a number of new op-
portunities emerge both in terms of data analysis and data collection. For example, the
context of the provided feedback can be extracted from the objective usage data (“What
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was the user doing before? ”). Furthermore, subjective measures can be triggered au-
tomatically based on the occurrence of certain usage patterns to gain more insight into
motives (“Why was the user behaving that way?”). Here, the necessity of structuring the
logged data by semantic concepts becomes even more apparent as data from very differ-
ent perspectives is collected and related to the same usage process. Thus, the semantic
annotations provide a means to abstract and focus on the data of interest.

7 Conclusion

In this paper, we presented a novel approach to semantically link the observation and
analysis of product usage data by conceptual information captured in ontologies. This
link yields two main benefits: (i) it adds focus to the potential mass of captured data
items; and (ii) it reduces the need for extensive post-processing of the collected data.
Together, these two benefits speed up the information feedback quality and cycle to-
wards development. Furthermore, we presented a tool chain that supports our approach
throughout the phases of observation specification, data collection, processing and anal-
ysis, and outlined a possible application scenario based on an industrial case study that
is currently performed. As a next step, we will evaluate the data collected in this case
study. Furthermore, we would like to apply our approach in different contexts to see
whether it is sufficiently generic.

We presented our vision of a fully automated data collection, processing, analysis
and presentation chain which is specified by only a few (potentially re-usable) doc-
uments. Ontologies and visual languages seem to be good candidates for such spec-
ification documents as they are accessible to the actual stakeholders of the observed
usage data (e.g., the various domain experts). By putting these people in the position
of being able to specify what they want to observe, one of the main problems in log
analysis, namely data quality, can be addressed. In many real-life scenarios, the data
are often still of a poor quality; because of a low priority in implementing logging
facilities, and a lack of anticipation of the kind of analysis that should be eventually
performed, collected data are not good enough to answer all the questions of interest.
However, because of the immense opportunities and increasing feasibility (due to auto-
mated approaches like presented in this paper) it can be expected, that the integration
of observation functionality will have a more prominent role in future product develop-
ments, which we have termed design for observation. As a consequence, better analysis
results can be expected.
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