508 research outputs found

    Forecasting Realized Volatility with Linear and Nonlinear Univariate Models

    Get PDF
    In this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 futures. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from high frequency intra-day returns. We also consider a simple algorithm based on bagging (bootstrap aggregation) in order to specify the models analyzed.Financial econometrics; volatility forecasting; neural networks; nonlinear models; realized volatility; bagging

    A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries

    Get PDF
    In this paper we propose a flexible model to capture nonlinearities and long-range dependence in time series dynamics. The new model is a multiple regime smooth transition extension of the Heterogenous Autoregressive (HAR) model, which is specifically designed to model the behavior of the volatility inherent in financial time series. The model is able to describe simultaneously long memory, as well as sign and size asymmetries. A sequence of tests is developed to determine the number of regimes, and an estimation and testing procedure is presented. Monte Carlo simulations evaluate the finite-sample properties of the proposed tests and estimation procedures. We apply the model to several Dow Jones Industrial Average index stocks using transaction level data from the Trades and Quotes database that covers ten years of data. We find strong support for long memory and both sign and size asymmetries. Furthermore, the new model, when combined with the linear HAR model, is viable and flexible for purposes of forecasting volatility.Realized volatility, smooth transition, heterogeneous autoregression, financial econometrics,leverage, sign and size asymmetries, forecasting, risk management, model combination.

    Forecasting Realized Volatility with Linear and Nonlinear Models

    Get PDF
    In this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 indexes. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from high frequency intra-day returns. We also consider a simple algorithm based on bagging (bootstrap aggregation) in order to specify the models analyzed in the paper.

    "Forecasting Realized Volatility with Linear and Nonlinear Models"

    Get PDF
    In this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 indexes. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from high frequency intra-day returns. We also consider a simple algorithm based on bagging (bootstrap aggregation) in order to specify the models analyzed in the paper.

    Evaluating the performance of GARCH models using White´s Reality Check

    Get PDF
    time seris, GARCH models, bootstrap, reality check, volatility, financial econometrics, Monte Carlo, forecasting, riskmetrics, moving average

    Modelling and Forecasting Noisy Realized Volatility

    Get PDF
    Several methods have recently been proposed in the ultra high frequency financial literature to remove the effects of microstructure noise and to obtain consistent estimates of the integrated volatility (IV) as a measure of ex-post daily volatility. Even bias-corrected and consistent (modified) realized volatility (RV) estimates of the integrated volatility can contain residual microstructure noise and other measurement errors. Such noise is called “realized volatility error”. Since such measurement errors are ignored, we need to take account of them in estimating and forecasting IV. This paper investigates through Monte Carlo simulations the effects of RV errors on estimating and forecasting IV with RV data. It is found that: (i) neglecting RV errors can lead to serious bias in estimators due to model misspecification; (ii) the effects of RV errors on one-step ahead forecasts are minor when consistent estimators are used and when the number of intraday observations is large; and (iii) even the partially corrected recently proposed in the literature should be fully corrected for evaluating forecasts. This paper proposes a full correction of , which can be applied to linear and nonlinear, short and long memory models. An empirical example for S&P 500 data is used to demonstrate that neglecting RV errors can lead to serious bias in estimating the model of integrated volatility, and that the new method proposed here can eliminate the effects of the RV noise. The empirical results also show that the full correction for is necessary for an accurate description of goodness-of-fit.Realized volatility; diffusion; financial econometrics; measurement errors; forecasting; model evaluation; goodness-of-fit

    Asymmetry and Long Memory in Volatility Modelling

    Get PDF
    A wide variety of conditional and stochastic variance models has been used to estimate latent volatility (or risk). In this paper, we propose a new long memory asymmetric volatility model which captures more flexible asymmetric patterns as compared with several existing models. We extend the new specification to realized volatility by taking account of measurement errors, and use the Efficient Importance Sampling technique to estimate the model. As an empirical example, we apply the new model to the realized volatility of S&P500 to show that the new specification of asymmetry significantly improves the goodness of fit, and that the out-of-sample forecasts and Value-at-Risk (VaR) thresholds are satisfactory. Overall, the results of the out-of-sample forecasts show the adequacy of the new asymmetric and long memory volatility model for the period including the global financial crisis.Asymmetric volatility, Long memory, Realized volatility, Measurement errors, Efficient importance sampling.

    Asymmetry and Leverage in Realized Volatility

    Get PDF
    A wide variety of conditional and stochastic variance models has been used to estimate latent volatility (or risk). In both the conditional and stochastic volatility literature, there has been some confusion between the definitions of asymmetry and leverage. In this paper, we first show the relationship among conditional, stochastic, integrated and realized volatilities. Then we develop a new asymmetric volatility model, which takes account of small and large, and positive and negative, shocks. Using the new specification, we examine alternative volatility models that have recently been developed and estimated in order to understand the differences and similarities in the definitions of asymmetry and leverage. We extend the new specification to realized volatility by taking account of measurement errors. As an empirical example, we apply the new model to the realized volatility of Standard and Poor's 500 Composite Index using Efficient Importance Sampling to show that the new specification of asymmetry significantly improves the goodness of fit, and that the out-of-sample forecasts and VaR thresholds are satisfactory.

    "Modelling and Forecasting Noisy Realized Volatility"

    Get PDF
    Several methods have recently been proposed in the ultra high frequency financial literature to remove the effects of microstructure noise and to obtain consistent estimates of the integrated volatility (IV) as a measure of ex-post daily volatility. Even bias-corrected and consistent (modified) realized volatility (RV) estimates of the integrated volatility can contain residual microstructure noise and other measurement errors. Such noise is called "realized volatility error". As such measurement errors ignored, we need to take account of them in estimating and forecasting IV. This paper investigates through Monte Carlo simulations the effects of RV errors on estimating and forecasting IV with RV data. It is found that: (i) neglecting RV errors can lead to serious bias in estimators due to model misspecification; (ii) the effects of RV errors on one-step ahead forecasts are minor when consistent estimators are used and when the number of intraday observations is large; and (iii) even the partially corrected R2 recently proposed in the literature should be fully corrected for evaluating forecasts. This paper proposes a full correction of R2 , which can be applied to linear and nonlinear, short and long memory models. An empirical example for &P 500 data is used to demonstrate that neglecting RV errors can lead to serious bias in estimating the model of integrated volatility, and that the new method proposed here can eliminate the effects of the RV noise. The empirical results also show that the full correction for R2 is necessary for an accurate description of goodness-of-fit.

    Asymmetry and Long Memory in Volatility Modelling

    Get PDF
    A wide variety of conditional and stochastic variance models has been used to estimate latent volatility (or risk). In this paper, we propose a new long memory asymmetric volatility model which captures more flexible asymmetric patterns as compared with existing models. We extend the new specification to realized volatility by taking account of measurement errors, and use the Efficient Importance Sampling technique to estimate the model. As an empirical example, we apply the new model to the realized volatility of Standard and Poor’s 500 Composite Index to show that the new specification of asymmetry significantly improves the goodness of fit, and that the out-of-sample forecasts and Value-at-Risk (VaR) thresholds are satisfactory. Overall, the results of the out-of-sample forecasts show the adequacy of the new asymmetric and long memory volatility model for the period including the global financial crisis.Asymmetric volatility; long memory; realized volatility; measurement errors; efficient importance sampling
    corecore