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Abstract 

 
A wide variety of conditional and stochastic variance models has been used to estimate 
latent volatility (or risk). In both the conditional and stochastic volatility literature, there 
has been some confusion between the definitions of asymmetry and leverage. In this 
paper, we first show the relationship among conditional, stochastic, integrated and 
realized volatilities. Then we develop a new asymmetric volatility model, which takes 
account of small and large, and positive and negative, shocks. Using the new 
specification, we examine alternative volatility models that have recently been 
developed and estimated in order to understand the differences and similarities in the 
definitions of asymmetry and leverage. We extend the new specification to realized 
volatility by taking account of measurement errors. As an empirical example, we apply 
the new model to the realized volatility of Standard and Poor’s 500 Composite Index 
using Efficient Importance Sampling to show that the new specification of asymmetry 
significantly improves the goodness of fit, and that the out-of-sample forecasts and VaR 
thresholds are satisfactory. 
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1 Introduction 
 
The accurate specification and modelling of risk are integral to optimal portfolio 
selection and risk management using high frequency and ultra high frequency data. In 
this context, a wide variety of conditional and stochastic variance models has been used 
to estimate latent volatility (or risk) using high frequency data, while the availability of 
tick data has led to alternative models of realized volatility to estimate integrated 
volatility in analysing ultra high frequency data (see McAleer (2005) for a 
comprehensive review of univariate and multivariate, and symmetric and asymmetric, 
conditional and stochastic volatility models, and Asai, McAleer and Yu (2006) for a 
detailed review of alternative specifications and estimation algorithms for multivariate 
stochastic volatility models).  
 
In the framework of diffusion processes, the daily variance of stock return is expressed 
as an integral of the intraday variance, which is called the integrated variance. If the 
microstructure noise is ignored, we may estimate it by the sum of squared returns of 
ultra high frequency data. Such an estimator is called the realized variance, which 
corresponds to an estimate of the integrated variance, namely the true daily variance. In 
the paper, we refer to the square root of the realized variance as the Realized Volatility 
(RV). For a recent extensive review of the RV literature, see McAleer and Medeiros 
(2008). 
 
Upon estimating RV by using ultra high frequency data, one of the major problems that 
arises is microstructure noise. Several authors have proposed alternative methods for 
removing the microstructure noise (see, for example, Bandi and Russell (2006), 
Barndorff-Nielsen, Hansen, Lunde and Shephard (2007), Zhang, Mykland and 
Aït-Sahalia (2005), and Hansen, Large and Lunde (2008)). Some methods provide 
bias-corrected and consistent estimators of the integrated variance, but other methods do 
not. Recently, Asai, McAleer and Medeiros (2008) have shown that, even when a 
bias-corrected and consistent estimator is used, non-negligible measurement errors 
remain in estimating and forecasting RV.  
 
The purpose of the paper is to propose a new specification of the asymmetric RV model. 
Before doing so, we need to clarify three points: (i) the relationship among conditional, 
stochastic, integrated and realized volatility; (ii) the confusion between the definitions 
of asymmetry and leverage; and (iii) the way in which to estimate a model of integrated 
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volatility using RV data. 
 
Regarding the second point, this paper proposes a general asymmetric volatility model. 
Based on the new specification, we examine alternative univariate volatility models that 
have recently been developed and estimated in order to understand the differences and 
similarities in the definitions of asymmetry and leverage. We focus on standardized 
and/or unstandardized leverage and size effects, and analyse five univariate SV models, 
namely the basic SV model, SV model with standardized leverage, and three different 
types of asymmetric SV models (see Harvey and Shephard (1996), Danielsson (1994), 
and Asai and McAleer (2005, 2008)). Then we evaluate the differential impacts of 
positive and negative shocks to returns of equal magnitude on future volatility, namely 
symmetry, asymmetry, type I asymmetry (or leverage), type II asymmetry, type III 
asymmetry and type IV asymmetry. The general model proposed here is classified as 
type IV asymmetry. 
 
With respect to the third point, we propose a new asymmetric model for RV by 
extending the general asymmetric volatility model, with an additional term in order to 
capture RV errors. It should be noted that introducing a correction for measurement 
error in the RV process renders the true volatility process unobservable. In order to 
estimate the proposed model, we employ the efficient importance sampling (EIS) ML 
method proposed by Liesenfeld and Richard (2003, 2006). The EIS evaluates the 
log-likelihood function of the model, including the latent process, by using simulations, 
such as the Monte Carlo Likelihood (MCL) technique of Durbin and Koopman (1997). 
Compared with the MCL method, the EIS method is applicable to various kinds of 
latent models (see also the discussion in Liesenfeld and Richard (2003)).  
 
The remainder of the paper is organized as follows. Section 2 shows the connection 
among conditional, stochastic, integrated and realized volatility. Section 3 develops a 
general asymmetric volatility model. We examine five kinds of asymmetric SV models, 
and propose classifications for symmetric and/or asymmetric effects. By using the 
structure of asymmetric effects, Section 4 proposes a new model for RV based on 
correcting for RV errors. Section 5 discusses the EIS-ML method, while Section 6 
presents the empirical results for the RV model using Standard and Poor’s 500 
Composite Index, and evaluates the new specification of asymmetry with respect to 
goodness of fit, out-of-sample forecasts and VaR thresholds. Section 7 gives some 
concluding remarks.  
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2 Instantaneous, Integrated and Realized Volatility 
 

Let )( τ+tp  is the logarithmic price of a given asset at time τ  ( )0 1τ≤ ≤  on day t 

( )1, 2,t = K . We assume that )( τ+tp  follows a continuous time diffusion process, 

 

 ( ) ( ) ( ) ( )dp t t d t dW tτ μ τ τ σ τ τ+ = + + + + , (1) 
 

where ( )tμ τ+  is the drift component, ( )tσ τ+  is the instantaneous volatility (or 

standard deviation), and ( )W t τ+  is a standard Brownian motion. Let tr  be the daily 

returns, defined as )1()( −−= tptprt . Conditionally on 

{ } 1

0
( 1), ( 1)t t t τ

τ
μ τ σ τ =

=
ℑ ≡ ℑ + − + − ,  

which is the σ-algebra (information set) generated by the sample paths of  ( )1tμ τ+ −  

and  ( 1)tσ τ+ −  ( )0 1τ≤ ≤ , we have 

 

 ( )1 1 2

0 0
~ ( 1) , ( 1)t tr N t d t dμ τ τ σ τ τℑ + − + −∫ ∫ . 

 

The term 
12 2

0
( 1)tV t dσ τ τ= + −∫  is known as the integrated variance, which is a 

measure of the day-t ex post volatility. The integrated variance is typically the object of 
interest as a measure of the true daily volatility. 
 
With respect to the model of the instantaneous volatility, there are several specifications, 
which are called “continuous-time Stochastic Volatility (SV)” models (see Ghysels, 
Harvey and Renault (1996), for example). Hull and White (1987) allow the 
squared-volatility to follow a diffusion process, 
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 2 2 2d d dBσ ασ τ ωσ= + , (2) 
 
where B is a second Brownian motion, and α  and ω  are parameters. Here, we have 
omitted ( )t τ+  in order to simplify the notation. Hull and White (1987) assume a 
negative correlation between W and B, thereby incorporating leverage effects. The 
model in (2) is closely related to the GARCH diffusion, which is derived as the 
diffusion limit of a sequence of GARCH(1,1) models (see Nelson (1990)).  
 
Wiggins (1987) assumes that the log-volatility follows a Gaussian Ornstein-Uhlenbeck 
(OU) process, 
 

 ( )2 2 2log logd d dBσ α μ σ σ τ ω= − + . (3) 

In the specification, we may introduce leverage effects by assuming a negative 
correlation between W and B. The asymmetric SV model of Harvey and Shephard 
(1996) is considered to be an Euler-Maruyama approximation of the continuous-time 
model (3), with negative correlation. Three major extensions of such diffusion-based SV 
models incorporate jumps to volatility process (Eraker, Johannes and Polson (2003)), 
model volatility as a function of a number of factors (Chernov et al. (2003)), and allow 
the log-volatility to follow a long memory process (Comte and Renault (1998)). 
 
If the underlying process of the instantaneous volatility is a continuous-time SV model, 
the resulting integrated variance is still a stochastic process. At this stage, it may be 
useful to distinguish the differences and similarities among the conditional variance, 
stochastic variance, and integrated variance. As shown in Nelson (1990), it is possible to 
consider the diffusion limits of typical conditional variance models, such as the 
GARCH model and the exponential GARCH model of Nelson (1991). Hence, 
conditional variance models are considered to be proxies or approximations of 
continuous-time SV models. Alternative approximations are the (discrete-time) SV 
models of Taylor (1982) and Harvey and Shephard (1996), which are obtained by the 
Euler-Maruyama discretization of the continuous-time SV models. Compared with the 
class of GARCH models, discrete-time SV models give better approximations in the 
sense that the latter is straightforwardly derived by the continuous-time SV models. 
Therefore, the conditional and (discrete-time) stochastic variance can be considered as 
approximations of the integrated variance obtained by the continuous-time SV models. 
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There are numerous extensions of GARCH models, and extensions of SV models are 
still being developed. There are many cases where it is not easy to consider a 
continuous-time SV model which corresponds to such an extension. For this reason, in 
the following section we consider asymmetric models of the integrated volatility 
directly. 
 
Although the integrated variance is unobservable, it is possible to estimate it using high 
frequency data. Such estimates are called “Realized Volatility (RV)”. Zhang, Mykland 
and Aït-Sahalia (2005) and Barndorff-Nielsen, Hansen, Lunde and Shephard (2007) 
propose consistent estimator of the integrated variance, under the existence of 
microstructure noise. For an extensive review of the realized volatility literature, see 
Bandi and Russell (2006) and McAleer and Medeiros (2008). 
 
 
3 Structure of Asymmetric Volatility Models 
 
In both the conditional and stochastic variance literature, there has been some confusion 
between the definitions of asymmetry and leverage. This section proposes a new 
asymmetric volatility model, and examines alternative asymmetric volatility models that 
have recently been developed and estimated, in order to understand the differences and 
similarities in alternative definitions of asymmetry and leverage. 
 
3.1  Asymmetric Volatility Model 
 
For the return process, we may write 
 

 ( ), ~ i.i.d. 0,1t t t t tr m V z z= + , 

 
where tm  and tV  are the time-varying mean and volatility processes, and tz  is the 
standardized disturbance. From the definition in the previous section, we have 

1

0
( 1)tm t dμ τ τ= + −∫ , 

12 2

0
( 1)tV t dσ τ τ= + −∫  and ( )~ 0,1tz N . Here, we consider a 

more general model for empirical analysis in a later section. We assume that the 
log-volatility follows an ARFIMA(p,d,q) process, 
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 ( ) ( ) ( )1
1ln 1 d

t tV L L Lα ξ− −
+ = + − Φ Θ , (4) 

 

where L is the lag-operator, ( )LΦ  and ( )LΘ  are the lag polynomials for the AR and 

MA coefficients, and ( )1 dL−  is the fractional difference operator. As discussed in the 

previous section, the innovation term in the volatility equation plays an important role 
in considering asymmetry and leverage effects. We suggest a generalized error, such 
that 
 

 
( ) ( )

( ) ( )

2

1 2 3 3

, ~ 0, ,

0 ,

t t t t t

t t t t t t

E N

z z z I z I z

ηξ ξ ξ η η σ

ξ γ γ γ δ γ δ δ

∗ ∗

∗

= − +

= + + ≤ < + ≤

 (5) 

 

where 1γ , 2γ  and 3γ  are parameters, and ( )0I z δ≤ <  is the indicator function, 

which takes the value of one if 0 z δ≤ < , and zero otherwise. The first two terms in 

tξ
∗  play similar roles as in the EGARCH model. Figure 1 shows the relationship 

between ξ  and z, and implies that negative shocks and large positive shocks increase 
future volatility via ξ , but small positive shocks decrease volatility. Such a 
phenomenon has recently been observed in Chen and Ghysels (2007) by their 
semi-parametric method using realized volatility. 
 

Consider an AR(1) model of log-volatility, namely, with 0d = , ( ) 1L LφΦ = − , and 

( ) 1LΘ = , such that 

 

 ( )1ln 1 lnt t tV Vφ α φ ξ+ = − + + . (6) 

 
Equation (6) is convenient for comparison with existing SV models: 
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(i) SV without Leverage: Equations (5) and (6), with restrictions 

1 2 3 0γ γ γ= = = . 
 

(ii) SV with Standardized Leverage: Equations (5) and (6), with 
restrictions 1 0γ <  and 2 3 0γ γ= = . 

 
(iii) SV with Unstandardized Leverage and Unstandardized Size 

Effects: Equations (5) and (6), with 3 0γ =  and with the replacement 
of tz  by t tr m− . 

  
(iv) SV with Standardized Leverage and Unstandardized Size Effects: 

Equations (5) and (6), with 3 0γ =  and with the replacement of tz  

by t tr m− . 

 
(v) SV with Standardized Leverage and Standardized Size Effects: 

Equations (5) and (6), with 3 0γ = . 
 
 
Model (i) is the basic SV model of Taylor (1982), which is symmetric as positive and 
negative shocks to returns have identical effects on future volatility. Model (ii) was 
suggested by Harvey and Shephard (1996), with different notation. Model (iii) was 
proposed by Danielsson (1994), and was estimated in Asai and McAleer (2005). Model 
(iv) was suggested by Asai and McAleer (2005) to capture both leverage and 
asymmetric effects. Model (v) adapts the EGARCH model of Nelson (1991) to the SV 
literature, and was suggested and estimated by Asai and McAleer (2008). In contrast to 
Model (iii), Model (v) uses the standardized returns in forecasting future volatility, and 
can capture various types of asymmetric and leverage effects. 
 
As compared with existing models, the new model in (4) and (5) allows log-volatility to 
follow the ARFIMA process, and incorporates more flexible asymmetric effects. 
 
3.2  Types of Asymmetry 
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Given the various models presented above, it is useful to consider the following 
categories of symmetric and asymmetric volatility models, conditional on a negative 
shock leading to an increase in volatility:   
 

(a) Symmetry: Positive and negative shocks to returns of equal magnitude 
have identical effects on future volatility. 
 

(b) Asymmetry: Positive and negative shocks to returns of equal magnitude 
have different effects on future volatility. 

 
(c) Type I Asymmetry (Leverage): A negative correlation exists between 

current shocks to returns and future volatility. 
 

(d) Type II Asymmetry: Positive and negative shocks to returns increase 
future volatility, but a negative shock has a larger effect than does a positive 
shock of equal magnitude. 

 
(e) Type III Asymmetry: Positive and negative shocks to returns increase 

future volatility, but a positive shock has a larger effect than does a negative 
shock of equal magnitude.  

 
(f) Type IV Asymmetry: Negative shocks and large positive shocks increase 

future volatility, but small positive shocks decrease future volatility. As for 
Type II Asymmetry, a negative shock has a larger effect on future volatility 
than does a positive shock of equal magnitude. 

 
 
Type I Asymmetry, or leverage, is based on the original framework of Black (1976) and 
Christie (1982), and is also consistent with the definition of leverage for continuous 
time SV models.  
 
In the conditional volatility literature, the empirical results based on the GJR model of 
Glosten, Jagannathan and Runkle (1992) and the EGARCH model of Nelson (1991) 
typically fall into the Type II Asymmetry category. Given the specification, leverage 
effects are not possible for the GJR model, whereas leverage is possible, though it is 
frequently not observed, for the EGARCH model. 
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For the new model in (4) and (5), the basic model arises when 1 2 3 0γ γ γ= = = . Setting 

1 3 0γ γ= =  provides a Symmetric model. Type I Asymmetry is given by 1 0γ < , 

2 1γ γ< −  and 3 0γ = . Restrictions on the parameters for Type II Asymmetry are given 

by 1 0γ < , 1 2 0γ γ+ >  and 3 0γ = . For the case of Type III Asymmetry, the restrictions 
are 2 1 0γ γ< <  and 3 0γ = . Regarding Type IV Asymmetry, the restrictions are 1 0γ < , 

1 2 0γ γ+ > , 3 0γ <  and 0δ > . 
 
 
4 Model Specification for Realized Volatility 
 
In this section, we consider the model for realized volatility (RV), based on the 
discussions in the previous section. 
 
Recently, Asai, McAleer and Medeiros (2008) showed that, even if a bias-corrected and 
consistent estimator of integrated volatility is used, RV will still include measurement 
errors, called ‘Realized Volatility errors’, which are not negligible in estimating 
volatility models. 
 
Let ty  be the daily RV, which is a consistent estimate of integrated volatility (IV). The 
new asymmetric model for RV to be analysed in the paper is given by 
 

 

( ) ( ) ( )

( ) ( )

( ) ( )

1
1

2

1 2 3 3

ln ,

ln 1

, ~ 0, ,

0 ,

,

t t t

d
t t

t t t t t

t t t t t t

t t t

y V U

V L L L

E N

z z z I z I z

z r V

η

α ξ

ξ ξ ξ η η σ

ξ γ γ γ δ γ δ δ

− −
+

∗ ∗

∗

= +

= + − Φ Θ

= − +

= + + ≤ < − ≤

=

 (7) 

 
where tz  is the standardized return and follows the standard normal distribution. This 
specification enables tU  to capture the measurement errors in RV. We will refer to this 
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model as the “RV-ARFIMA(p,d,q)-AS ( )1 2 3, ,γ γ γ -noise” model. The model allows 

various types of symmetric and/or asymmetric effects, long-memory property, and takes 
account of the realized volatility errors. If the measurement errors are neglected, we will 
have a special case with 0σ = . It should be noted that we consider the mean subtracted 
return, tr , instead of return. 
 
 
5 EIS-ML Estimation 
 
The likelihood function for the asymmetric model in equation (7) includes 
high-dimensional integration, which is difficult to calculate numerically. We employ the 
Efficient Importance Sampling (EIS) method developed by Liesenfeld and Richard 
(2003, 2006) for evaluating the log-likelihood.  
 
The pilot method for the EIS is the Accelerated Gaussian Importance Sampling (AGIS) 
approach, as developed in Danielsson and Richard (1993). The AGIS approach is 
designed to estimate dynamic latent variable models, where the latent variable follows a 
linear Gaussian process. While the AGIS technique has limited applicability, the EIS is 
applicable to models with more flexible classes of distributions and specifications for 
the latent variables. As in the case of AGIS, EIS is a Monte Carlo technique for the 
evaluation of high-dimensional integrals. The EIS relies on a sequence of simple 
low-dimensional least squares regressions to obtain a very accurate global 
approximation of the integrand. This approximation leads to a Monte Carlo sampler, 
which produces highly accurate Monte Carlo estimates of the likelihood. 
 
5.1 Likelihood Evaluation via EIS 
 
Let ty  be an observable variable and lnt th V=  be a latent variable. We denote the 

joint density of { } 1

T
T t t

Y y
=

=  and { } 1

T
T t t

H h
=

=  as ( ), ;T Tf Y H θ , indexed by the 

unknown parameter vector θ . In dynamic latent variable models, the joint density is 
typically formulated as: 
 

 ( ) ( ) ( ) ( )1 1 1 1 1
1 1

, ; , , , , , , ,
T T

T T t t t t t t t t t t
t t

f Y H f y h Y H g y h Y p h H Yθ θ θ θ− − − − −
= =

= =∏ ∏ , 
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where ( )g  denotes the conditional density of ty  given ( )1,t th y − , and ( )p  the 

conditional density of th  given ( )1 1,t tH Y− − . For ease of notation, it is assumed that the 

initial conditions are known constants, but EIS can easily accommodate alternative 
(stochastic) assumptions. 
 
The likelihood function is given by the T-dimensional integral: 
 

 ( ) ( ); , ;T T T TL Y f Y H dHθ θ= ∫ , 

 

and a natural MC estimate of ( ); TL Yθ  is given by 

 

 ( ) ( )( )1
1 1

1ˆ ; , ,
TN

i
T t t t

i t

L Y g y h Y
N

θ θ−
= =

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑ ∏ % , (8) 

 

where ( ) ( ){ }
1

Ti
t t

h θ
=

%  denotes a trajectory drawn from the sequence of T densities. Each 

( ) ( )i
th θ%  is drawn from the conditional density ( ) ( )( )1 1, ,i

t t tp h H Yθ θ− −
% . 

 
In order to understand the EIS, we first note that EIS searches for a sequence of 
samplers that exploits the sample information on th  conveyed by ty . Let 

( ){ }1 1
,

T

t t t t
m h H x− =

 denote a sequence of auxiliary samplers, indexed by the auxiliary 

parameters { } 1

T
n t t

X x
=

= . Regardless of the values of the auxiliary parameters, the 

likelihood function, ( ); TL Yθ , is rewritten as 

 

 ( ) ( )
( ) ( )1 1

1
1 11

, , ,
; ,

,

T T
t t t t

T t t t T
t tt t t

f y h Y H
L Y m h H x dH

m h H x
θ

θ − −
−

= =−

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∏ ∏∫ , 
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and the corresponding importance sampling MC estimate of the likelihood is given by 
 

 ( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1 1

1 1 1 1

, , ,1; ,
,

i i
TN t t t t t t

T T i i
i t t t t t t

f y h x Y H x
L Y X

N m h x H x x

θ
θ

− − −

= = − −

⎡ ⎤⎧ ⎫
⎪ ⎪⎢ ⎥= ⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

∑ ∏
% %

%
% %

, (9) 

 

where ( ) ( ){ }
1

Ti
t t t

h x
=

%  denotes a trajectory drawn from the sequence of auxiliary 

importance samplers, m. 
 
The EIS chooses a sequence of m densities by selecting values of the auxiliary 
parameters, TX , which provide a good match between the product in the numerator and 
that in the denominator in equation (9) to minimize the MC sampling variance of 

( ); ,T TL Y Xθ% . In order to implement EIS, it requires constructing a positive functional 

approximation, ( );t tk H x , for the density ( )1 1, , ,t t t tf y h Y H θ− − , with the requirement 

that it be analytically integrable with respect to th . In Bayesian terminology, ( );t tk H x  

plays a role of a density kernel for ( )1,t t tm h H x− , which is then given by 

 

 ( ) ( )
( )1

1

;
,

,
t t

t t t
t t

k H x
m h H x

H xχ−
−

= , (10) 

 

where  ( ) ( )1, ;t t t t tH x k H x dhχ − = ∫ . Then, the EIS requires solving a back-recursive 

sequence of low-dimensional least squares problems of the form: 
 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ){ }
( ) ( )( )

1 1 1
1

2

ˆ arg min ln , , , ,

ln ; ,

t

N
i i i

t t t t t t t
x i

i
t t t

x f y h Y H H x

c k H x

θ θ θ ξ θ θ

θ

− − +
=

⎡= ⎢⎣

⎤− − ⎦

∑ % % %

%

 (11) 
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for : 1t T → , with ( )1, 1T TH xξ + ≡ . As in equation (8), ( ) ( ){ }
1

Ti
t t

h θ
=

%  denotes a 

trajectory drawn from the p densities, and the tc  are unknown constants to be 

estimated jointly with tx . If the density kernel ( );t tk H x  is chosen within the 

exponential family of distributions, the EIS least squares problems become linear in tx  
under the canonical representation of exponential kernels. 
 
The EIS estimate of the likelihood function for a given value of θ  is obtained by 

substituting ( ){ } 1
ˆ T

t t
x θ

=
 for { } 1

T
t t

x
=

 in equation (9). In order to obtain maximally 

efficient importance samplers, a small number of iterations of the EIS algorithm is 
required, where the natural samplers p are replaced by the previous stage importance 
samplers. For such iterations to converge to fixed values of the auxiliary parameters, ˆtx , 
which are expected to produce optimal importance samplers, it is necessary to apply the 
technique of Common Random Numbers (CRNs). 
 
5.2  Implementation Issues 
 
As we consider the nonlinear ARFIMA(p,d,q) process, it is not easy to incorporate it in 
the likelihood function. Hence, we suggest to employ an AR(J) approximation of the 

AR ( )∞  representation of the ARFIMA part. It is similar to the MA(J) approximation 

of the FIEGARCH model by Bollerslev and Mikkeslen (1996), in the sense that the 
coefficient of the J-th lagged term is almost zero and negligible for large J, such as 
J=1000. 
 
Based on the above truncation, we have the distributions of ty  and th . The 

RV-ARFIMA(p,d,q)-AS ( )1 2 3, ,γ γ γ -noise model in equation (7) assumes that RVs, ty , 

given the latent log-volatility, th , follows the normal distribution, 
 

( ) ( )2
2

1, exp
2t t t tg y h y hθ
σ

⎧ ⎫∝ − −⎨ ⎬
⎩ ⎭

. 
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Conditional on ( )1 1,t tH r− − , the log-volatility, ( )lnt th V= , follows the normal 

distribution, 
 

( ) ( )2
1 1 2

1, , exp ,
2t t t t t

t

p h H r h lθ α
σ− −

⎧ ⎫
∝ − − −⎨ ⎬

⎩ ⎭
 

 
where  
 

 ( )

( )

1

1

1

0 for 1

for 2, ,

for 1, ,

t

t i t i t t
i

J

i t i t t
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with ( ) ( )1 2 3 30t t t t th h h h h
t t t t t tr e r e re I re I reξ γ γ γ δ γ δ δ− − − − −∗ = + + ≤ < + ≤  , 2

ξσ  is the 

variance of tξ  determined by ( )2
1 2 3, , , , ηγ γ γ δ σ , ( ), 1, , ,t J t t Jλ λ λ+

′Λ = K  and jC  is 

the unconditional covariance matrix of ( )1, , jh h ′K . 

 
We chose m as the parametric extensions of the natural samplers, p. Hence, the 
parameterization for k is given by 

 

 ( ) ( ) ( )1 1 1; , , , ,t t t t t t t tk H x r p h H r h xθ ζ− − −= , 
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where the auxiliary function ( ),t th xζ  is itself a Gaussian density kernel. Under this 

parameterization, the natural sampler, p, cancels out in the least squares problem in 

equation (11), to the effect that ( )ln ,t th xζ  serves to approximate 

( )1 1ln , , ,t t t tg y h Y r θ− −  ( )1ln , ,t t tH x rχ ++ . In particular, the appropriate auxiliary 

function for the asymmetric model is given by ( ) ( )1 2ln , expt t t t t th x x h x hζ = + , with 

( )1 2,t t tx x x= , and the density kernels of the importance samplers have the form 

 

 ( )
2

2
1 1 22 2

1 1; , exp 2 2
2

t t
t t t t t t t

t t t

lk H x r x h x hλ α
σ σ σ−

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞+⎪ ⎪⎢ ⎥∝ − − + + −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦

. 

 
Accordingly, the conditional mean and variance of th  on m are given by 
  

 
2

2 2
, , 1 ,2 2

2

, ,
1 2

t t
m t m t t m t

t t t

l x
x

α σμ σ σ
σ σ

⎛ ⎞+
= + =⎜ ⎟ −⎝ ⎠

 (12) 

 

respectively. Integrating ( )1; ,t t tk H x r −  with respect to th , and omitting irrelevant 

multiplicative factors, leads to the following expression for the integrating constant: 
 

 ( ) ( )22
,

1 1 2 2
,

, , exp
2 2

m t t
t t t

m t t

l
H x r

μ α
χ

σ σ− −

⎧ ⎫+⎪ ⎪∝ −⎨ ⎬
⎪ ⎪⎩ ⎭

. (13) 

 
Based upon these functional forms, the computation of an EIS estimate of the likelihood 
for the asymmetric model requires the following steps: 
 
Step (0): Use the natural samplers, p, to draw N trajectories of the latent variable, 
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( ) ( ){ }
1

Ti
t t

h θ
=

% . 

 

Step (t): ( ): 1t T → : Use these random draws to solve the back-recursive sequence of 

least squares problems, as defined in equation (11). The step t least squares 
problem is characterized by the following linear auxiliary regression: 
 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ){ } ( )

2
12

2

1 2

1 ˆln ,
2

constant , :1 ,

i
t t t t

i i i
t t t t t

y h h x

x h x h u i N

χ θ θ
σ

θ θ

+− − +

= + + + →

%

% %
 

 

where ( )i
tu  denotes the regression error term. The initial condition for the 

integrating constant (in equation (13)) is given by ( )1, , 1T T Th x rχ + ≡ . 

 

Step (T + 1): The EIS samplers, ( )( ){ }1 1
ˆ,

T

t t t t
m h H x θ−

=
, which are characterized by the 

conditional mean and variance given in equation (12), are used to draw N 

trajectories ( ) ( )( ){ }
1

ˆ
Ti

t t t
h a θ

=

% , from which the EIS estimate of the likelihood is 

calculated according to equation (9). 
 
We set 50N = , as Liesenfeld and Richard (2003) reported that 50 is sufficient for 
univariate and nonlinear latent variable models, such as SV. After 7-10 iterations, 

( ); , ,T T TL Y X Rθ%  converged for each θ . The next section gives the EIS-ML estimates 

for the asymmetric model of RV. 
 
For the case of neglecting measurement errors (that is, 0σ = ), th  is observable, so it 
is possible to perform maximum likelihood estimation without simulations. By 
comparing the log-likelihood with the EIS log-likelihood above, we have the 

conventional likelihood ratio test statistics, which follows the ( )2 1χ  distribution under 
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the null hypothesis that 0σ = . 
 
 
6 Empirical Results 
 
The empirical analysis focuses on the RV of Standard and Poor’s 500 Composite Index. 
In order to estimate the daily realized volatility, we use the two time scales estimator 
(TTSE) of Zhang, Mykland and Aït-Sahalia (2005) with five-minute grids, which is a 
consistent estimator of the daily realized volatility. The sample period is Jan/3/1996 to 
March/29/2007, giving T=2796 observations of RV.  
 
As a preliminary analysis, we consider the new Fractional Integrated EGARCH-t  
models given in Section 3 as 
 

 

( )

( ) ( ) ( )

( )

( ) ( )

2 1
1

1 2 3 3

, ~ ,

ln 1 ,

,

0 ,

t t t t

d
t t

t t t

t t t t t t

r z z St

L L L

E

z z z I z I z

σ ν

σ α ξ

ξ ξ ξ

ξ γ γ γ δ γ δ δ

− −
+

∗ ∗

∗

=

= + − Φ Θ

= −

= + + ≤ < − ≤

 (14) 

 

where ( )St ν  denotes the standardized t distribution, with degrees of freedom given by  

v. Note that this model implicitly specifies that 0ησ = , so that tσ  is determined by 

the past information. We denote the above model as the 

FIEGARCH(p,d,q)-t-AS ( )1 2 3, ,γ γ γ  model and, for the case where d=0, as the 

EGARCH(p,q)-t-AS ( )1 2 3, ,γ γ γ  model. 

 

We estimated two kinds of models, EGARCH(1,1)-t-AS ( )1 2 3, ,γ γ γ and 
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FIEGARCH(1,d,1)-t-AS ( )1 2, ,0γ γ . Table 1 shows the ML estimates of these models. 

For the former model, all the estimated parameters, except for α  and 3γ , are 
significant at the five percent level. The estimate of φ  is close to 0.99, showing high 
persistence in volatility. The estimate of 1γ  is negative, while that of 2γ  is positive. 
The estimate of 1 ν  is 0.11, indicating that the estimate of ν  is close to 9. The results 
are typical for the EGARCH-t specification. For the long memory model, all the 
estimated parameters, except for 1γ  and 1 ν , are significant. This specification shows 
the lack of importance of asymmetric effects and heavy-tailed conditional distributions. 
Similar results are also found in the literature with the FIEGARCH-t specification. 
Regarding the type of asymmetry, the estimates of the former model indicate Type II 
asymmetry, while those of the latter model display Symmetry. 
 
In the following, we will show that the empirical results are completely different in the 
case of RV. It should be noted that it is inadequate to compare the log-likelihood of the 
EGARCH models with that of RV models as the former is based on tr  while the latter 
is based on the RV, ty . Furthermore, the fat tails of the conditional distribution of tr  
are irrelevant for the RV model. 
 

Table 2 shows the EIS-ML results of the RV-AR(1)-AS ( )1 2 3, ,γ γ γ -noise model. 

Regarding asymmetry, we consider four specifications, namely AS ( )0,0,0 , AS ( )1,0,0γ , 

AS ( )1 2, ,0γ γ , and AS ( )1 2 3, ,γ γ γ . All the estimated parameters are significant at the five 

percent level. The the AS ( )1 2 3, ,γ γ γ  model has the smallest AIC and BIC, we report the 

results only for this specification.  
 
The estimate of σ  is close to 0.4, showing that the RV errors are not negligible. The 

estimate of φ  is 0.986, while that of ησ  is 0.11, which are typical of SV models. The 

estimate of 1γ  is negative, while that of 2γ  is positive. Unlike the estimates of the 
EGARCH model, the estimate of 3γ  is negative and significant. Figure 2 gives the 
news impact from tz  to 1ln tV + , showing that negative shocks and large positive 
shocks increase future volatility, but small positive shocks decrease volatility. In other 
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words, Figure 2 displays Type IV Asymmetry. 
 

Table 3 presents the EIS-ML results for the RV-ARFIMA(1,d,0)-AS ( )1 2 3, ,γ γ γ -noise 

model. As before, we consider four kinds of asymmetric effects. The AIC and BIC 

selected the AS ( )1 2 3, ,γ γ γ  model, so we will concentrate the analysis on this model. All 

the estimated parameters are significant at the five percent level. The estimate of σ  is 
close to 0.4, indicating that the RV errors are not negligible. The estimate of d is 0.47, 
showing that the log-volatility has long memory and is a stationary process. The 
estimate of φ  is positive and close to 0.4, which is against the typical value of -0.1 in 
the RV literature. The difference can be explained by the existence of RV errors, 

lnt t tU y V= − . As shown in the Monte Carlo experiments of Asai, McAleer and 
Medeiros (2008), even minor RV errors cause bias in the estimates if the RV error is 
neglected in estimation. The signs of 1γ , 2γ  and 3γ  are the same as in the case of 
Table 2. Figure 3 shows the news impact from tz  to 1ln tV + , and the curve is classified 
as Type IV asymmetry.  
 

From Tables 2 and 3, we find that the RV-ARFIMA(1,d,0)-AS ( )1 2 3, ,γ γ γ -noise model 

has the smallest AIC, while BIC chooses the RV-AR(1)-AS ( )1 2 3, ,γ γ γ -noise model. 

These tables indicate that including the additional term, 3γ , significantly improves the 
goodness of fit of the model.  
 

Regarding the RV-ARFIMA(1,d,0)-AS ( )1 2 3, ,γ γ γ -noise model, we examine the 

performance of the out-of-sample forecasts. Fixing the sample size at 2,500, we 
re-estimated the model and computed one-step-ahead forecasts of log-volatility for the 
last 150 days. Our evaluation is based on the Mincer-Zarnowitz Regression, namely 
 

| 1ˆ , 1, 2, ,150t t t tx a bx e t−= + + = K  

 

where tx  can be the observed RV or log-RV on day t, and | 1ˆt tx −  is the one-step-ahead 
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forecast of tx  on day t. If the model is correctly specified, then 0a =  and 1b = . 
Table 4(a) shows the estimates of the coefficients and the heteroskedasticity-consistent 
F test statistics for the joint null hypothesis. For both of the RV and log- RV series, the 
F test does not reject the null hypothesis. As our model is based on log-RV, the 
estimates for log-RV are very close to the values expected under the null hypothesis.  
 
For the above out-of-sample analysis, we also calculated the VaR thresholds, 
accommodating the filtered historical simulation (FHS) approach, which is an effective 
method for predicting VaR thresholds (see Kuester et al. (2006) for some recent studies 
regarding the FHS approach). In short, the FHS approach estimates the empirical 
distribution of the standardized returns, then obtains the 100p percentiles to compute the 
100p percent VaR thresholds. In our analysis, each time we estimated the model with 
2,500 observations, we computed the 100p percentiles of the empirical distribution 
based on the last 500 observations, discarding the first 2,000 observations. Combined 
with the one-day-ahead forecasts of log-volatility, we computed the 100p percent VaR 
thresholds. 
 
In order to assess the estimated VaR thresholds, we conducted the unconditional 
coverage and independence tests developed by Christoffersen (1998). Consider the “hit 
sequence” of VaR violations, which takes one if the loss is larger than the VaR 
threshold, while it takes zero if the VaR is not violated. If we could predict the VaR 
violations, then that information may help to construct a better model. Hence, the hit 
sequence of violations should be unpredictable, and should follow independent 
Bernoulli distribution with parameter p. This is the null hypothesis of the likelihood 
ratio test for unconditional coverage. The likelihood ratio test of independence is 
constructed against a first-order Markov alternative, and the tests have an asymptotic 

2
1χ  distribution. Table 4(b) shows the percentage of VaR violations and test results. For 

the 5% and 1% VaR thresholds, the tests do not reject the null hypothesis, which 
suggests that the estimated VaR thresholds are satisfactory. 
 
 
7 Concluding Remarks 
 
In both the conditional and stochastic volatility literature, there has been some 
confusion between the definitions of asymmetry and leverage. In order to clarify this 



 23

issue, the paper showed the relationship among conditional, stochastic, integrated and 
realized volatility. Then we proposed a new asymmetric volatility model, which 
sensitively capture the effects of large and small, and positive and negative, shocks. 
Based on the new specification, this paper examined alternative univariate volatility 
models that have recently been developed and estimated in order to understand the 
differences and similarities in the definitions of asymmetry and leverage.  
 
We extended the specification of asymmetric volatility in order to model RV by taking 
account of the RV errors. This is a general model which includes not only various kinds 
of asymmetric effects, but also short and long memory specifications. We applied the 
EIS-ML method to estimate the model of RV.  
 
The empirical results for the RV of Standard and Poor’s 500 Composite Index showed 
the existence of RV errors. The estimates of the short and long memory models 
supported the Type IV asymmetry definition, which satisfies the following three 
conditions: (i) negative shocks to returns increase future volatility; (ii) large positive 
shocks to returns increase future volatility, but a negative shock has a larger effect on 
volatility than does a positive shock of equal magnitude; and (iii) small positive shocks 
to returns decrease future volatility. Thus, the new specification of asymmetry 
significantly improved the goodness of fit, and the out-of-sample forecasts and VaR 
thresholds were satisfactory. 
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Table 1: ML Estimates of the New EGARCH Class 

 
Parameters New EGARCH-t FIEGARCH(1,d,0)-t 

d   0.4067 (0.0256) 
φ  0.9856 (0.0034) -0.2651 (0.0450) 
α  0.1937 (0.2013) 0.3101 (0.0777) 

1γ  -0.1004 (0.0122) 0.0115 (0.0441) 

2γ  0.1025 (0.0142) 2.4407 (0.0776) 

3γ  -0.0295 (0.0211)   
δ  0.5049 (0.0438)   

1ν  0.1109 (0.0165) 0.0004 (0.0410) 
Log-Like -3872.87  --  

AIC 7759.74  --  
BIC 7801.30  --  
 

Note: Standard errors are in parentheses. With respect to 
FIEGARCH, the log-likelihood and other statistics are 
not reported, as they are not comparable because of 1000 
initial values. 
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Table 2: EIS Estimates of RV-AR(1)-AS ( )1 2 3, ,γ γ γ -noise 

 

Parameters AS ( )0,0,0 AS ( )1,0,0γ AS ( )1 2, ,0γ γ AS ( )1 2 3, ,γ γ γ  

φ  0.9747 
(0.0051) 

0.9728 
(0.0040) 

0.9870 
(0.0044) 

0.9856 
(0.0044) 

ησ  0.1478 
(0.0091) 

0.1111 
(0.0075) 

0.1110 
(0.0074) 

0.1103 
(0.00720) 

α  -0.3148 
(0.1091) 

-0.1795 
(0.0788) 

-0.8439 
(0.3227) 

1.2246 
(0.5127) 

1γ   -0.0681 
(0.0046) 

-0.0649 
(0.0043) 

-0.0418 
(0.0062) 

2γ    0.0424 
(0.0074) 

0.0561 
(0.0079) 

3γ     -0.1934 
(0.0471) 

δ  
   0.4902 

(0.0605) 

σ  0.4054 
(0.0073) 

0.4092 
(0.0067) 

0.4125 
(0.0067) 

0.4116 
(0.0067) 

Log-Like -1921.94 -1821.52 -1806.24 -1793.51 
AIC 3851.88 3653.04 3624.48 3603.03 
BIC 3875.63 3682.72 3660.10 3650.52 

 
Note: Standard errors are in parentheses. 
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Table 3: EIS Estimates of RV-ARFIMA(1,d,0)-AS ( )1 2 3, ,γ γ γ -noise 

 

Parameters AS ( )0,0,0 AS ( )1,0,0γ AS ( )1 2, ,0γ γ AS ( )1 2 3, ,γ γ γ  

d 
0.4955 

(0.0039) 
0.4987 

(0.00089) 
0.4748 

(0.0090) 
0.4727 

(0.0076) 

φ  0.3261  
(0.0603) 

0.3676 
(0.0438) 

0.4166 
(0.0538) 

0.4373 
(0.0291) 

ησ  0.2416 
(0.0225) 

0.1750 
(0.0147) 

0.1852 
(0.0157) 

0.1739 
(0.0080) 

α  -0.5832 
(0.2394) 

0.0021 
(0.0026) 

0.0051 
(0.0027) 

0.0046 
(0.0020) 

1γ   -0.0865 
(0.0061) 

-0.0827 
(0.0063) 

-0.0275 
(0.0075) 

2γ    0.0226 
(0.0077) 

0.0511 
(0.0076) 

3γ     -0.2428 
(0.0287) 

δ  
   0.8841 

(0.0196) 

σ  0.3648 
(0.01208) 

0.3844 
(0.0081) 

0.3827 
(0.0085) 

0.3858 
(0.0067) 

Log-Like -1908.27 -1819.30 -1811.37 -1792.16 
AIC 3826.54 3650.60 3636.75 3602.31 
BIC 3856.22 3686.22 3678.30 3655.74 

 
Note: Standard errors are in parentheses. 
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Table 4: One-Day-Ahead Forecasting Results 
 

(a) Mincer-Zarnowitz Regression 

 | 1ˆt t t tx a bx e−= + +  

Dependent 
variable 

Constant Forecast F test 

Volatility -0.2348 
(0.1380) 

1.7574 
(0.4207) 

4.1797 
[0.1237] 

Log-Volatility -0.0044 
(0.1305) 

0.9834 
(0.1109) 

0.3065 
[0.8579] 

 
Note: Heteroskedasticity-consistent standard errors are in 
parentheses. ‘F test’ denotes the value of the 
heteroskedasticity-robust F test for the null hypothesis 

0 : 0, 1H a b= = . P-values are in brackets. 
 
 

(b) Backtesting VaRs 
 

VaR % Violation UC ID 

5% 0.0464 0.0432 
[0.8354] 

0.6856 
[0.4077] 

1% 0.0132 0.1458 
[0.7026] 

0.0541 
[0.8162] 

 
Note: ‘% Violation’ is the percentage of days when 
returns are less than the VaR threshold. UC and IND 
are the likelihood ratio tests for unconditional 
coverage and independence (against a first-order 
Markov alternative) developed by Christoffersen 
(1998). P-values are in brackets. 
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