10 research outputs found

    Behavioural and physiological responses of individually housed dairy calves to change in milk feeding frequency at different ages

    Get PDF
    peer reviewedThis study aimed to use a range of non-invasive monitoring technologies to investigate the behavioural and physiological responses of individually housed dairy calves to age at change in milk replacer (MR) feeding frequency. Forty-eight Holstein Friesian calves were individually penned and fed MR (625 g/d) as solids in one of three feeding regimes: (i) once-a-day feeding commencing at age 14 d (OAD14), (ii) once-a-day feeding commencing at age 28 d (OAD28) and (iii) twice-a-day feeding (TAD). Several behavioural (automatic activity sensors), physiological (infrared [IR] thermography and heart rate variability [HRV]) and haematological indicators were used to examine calf responses. Reduction in milk feeding frequency at 14 or 28 d of age increased daily concentrate intakes and drinking water consumption throughout the pre-wean period. Calf lying behaviour was unaffected by reduction in milk feeding frequency; however, TAD calves recorded a significant decrease in total daily lying time during the post-wean period compared with OAD28s. There was no effect of treatment on IR eye or rectal temperature throughout the experiment; however, there was an effect of age, with IR temperature decreasing as calf age increased. OAD14 calves tended to have decreased HRV at days 14 and 16, which is suggestive of an increased stress load. The findings suggest that under high levels of animal husbandry and whilst maintaining the same amount of milk powder/d (625 g/d), reduction in milk feeding frequency from twice to once daily at 28 d can occur without significant impact to behavioural, performance and physiological parameters assessed here

    Temporal-spatial heterogeneity in animal-environment contact: Implications for the exposure and transmission of pathogens

    Get PDF
    Contact structure, a critical driver of infectious disease transmission, is not completely understood and characterized for environmentally transmitted pathogens. In this study, we assessed the effects of temporal and spatial heterogeneity in animal contact structures on the dynamics of environmentally transmitted pathogens. We used real-time animal position data to describe contact between animals and specific environmental areas used for feeding and watering calves. The generated contact structure varied across days and among animals. We integrated animal and environmental heterogeneity into an agent-based simulation model for Escherichia coli O157 environmental transmission in cattle to simulate four different scenarios with different environmental bacteria concentrations at different areas. The simulation results suggest heterogeneity in environmental contact structure among cattle influences pathogen prevalence and exposure associated with each environment. Our findings suggest that interventions that target environmental areas, even relatively small areas, with high bacterial concentration can result in effective mitigation of environmentally transmitted pathogens

    Direct and indirect therapy: Neurostimulation for the treatment of dysphagia after stroke

    No full text

    ESICM LIVES 2016: part two : Milan, Italy. 1-5 October 2016.

    Get PDF
    Meeting abstrac
    corecore