5 research outputs found

    Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function

    Get PDF
    This study shows that impaired cholesterol egress from late endosomes in cells with high annexin A6 levels is associated with altered soluble N-ethylmaleimide–sensitive fusion protein 23 (SNAP23) and syntaxin-4 cellular distribution and assembly and accumulation in Golgi membranes. This correlates with reduced secretion of cargo along the constitutive and SNAP23/syntaxin-4–dependent secretory pathway

    Common players in mitochondria biogenesis and neuronal protection against stress-induced apoptosis

    No full text
    Mitochondria biogenesis is a fundamental process for the organization and normal function of all cells. Since the majority of mitochondrial proteins are synthesized in the cytosol, protein import is the major mechanism for mitochondria biogenesis. We describe the different pathways that ensure correct targeting and intra mitochondrial sorting of mitochondrial proteins. The import process of several proteins of the mitochondrial intermembrane space relies on the Mitochondrial Import and Assembly 40 and Essential for respiration and vegetative growth 1 (Erv1) proteins that together constitute the oxidative folding machinery of the mitochondrial intermembrane space. Recent work has implicated the FAD-oxidase protein Erv1 (ad its human homolog Augmenter of Liver Regeneration) as an anti-apoptotic factor in mammalian cells (including neuronal cells) that undergo Reactive Oxygen Species-triggered apoptosis. The different roles of this protein as a key factor in mitochondria biogenesis, iron-sulfur cluster biogenesis and in neuronal protection against apoptosis are discussed
    corecore