11 research outputs found
Consistent patterns of common species across tropical tree communities
Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
Consistent patterns of common species across tropical tree communities
Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
Consistent patterns of common species across tropical tree communities
Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
Tricuspid Annular Plane Systolic Excursion/Systolic Pulmonary Artery Pressure Ratio and Cardiorenal Syndrome Type 2 in the Systemic Sclerosis EUSTAR Cohort
Objective. The aim of the study was to evaluate the association between the tricuspid annular plane systolic excursion (TAPSE)/systolic pulmonary artery pressure (sPAP) ratio and estimated glomerular filtration rate (eGFR) and their association with mortality in the European Scleroderma Trials and Research (EUSTAR) cohort.Methods. Patients with systemic sclerosis (SSc) from the EUSTAR database with TAPSE, sPAP, and parameters required to calculate eGFR were included. Logistic regression and Cox regression analysis were performed to evaluate TAPSE/sPAP as a risk factor for chronic kidney disease (CKD) and overall survival.Results. A total of 2,370 patients with SSc were included; 284 (12%) patients had CKD stage 3a-5. TAPSE/sPAP (odds ratio [OR] 0.479; 95% CI 0.310-0.743; P < 0.001), arterial hypertension (OR 3.118; 95% CI 2.173-4.475; P < 0.001), diastolic dysfunction (OR 1.670; 95% CI 1.148-2.428; P < 0.01), and N-terminal pro-B-type natriuretic peptide (OR 1.165; 95% CI 1.041-1.304; P < 0.01) were associated with CKD stage 3a-5. TAPSE/sPAP <= 0.32 mm/mm Hg (hazard ratio [HR] 3.589; 95% CI 2.236-5.761; P < 0.001), eGFR <60 mL/min per 1.73 m(2) (HR 2.818; 95% CI 1.777-4.468; P < 0.001), and age (HR 1.782; 95% CI 1.348-2.356; P < 0.001) were the most significant predictive factors for all-cause mortality. A total of 276 patients with SSc had pulmonary hypertension (PH) confirmed by right heart catheterization, with 69 (25%) having CKD stage 3a-5. No difference was found in eGFR between patients with PH with reduced or normal cardiac index.Conclusion. Reduced TAPSE/sPAP ratio is independently associated with CKD. TAPSE/sPAP ratio <= 0.32 mm/mm Hg and eGFR <60 mL/min per 1.73 m(2) are prognostic factors for all-cause mortality. In patients with SSc with PH, eGFR is independent by reduced cardiac output
NADPH oxidase enzymes in skin fibrosis: molecular targets and therapeutic agents
Fibrosis is characterized by the excessive deposition of extracellular matrix components eventually resulting in organ dysfunction and failure. In dermatology, fibrosis is the hallmark component of many skin diseases, including systemic sclerosis, graft versus host disease, hypertrophic scars, keloids, nephrogenic systemic fibrosis, porphyria cutanea tarda, restrictive dermopathy and other conditions. Fibrotic skin disorders may be debilitating and impair quality of life. There are few FDA-approved anti-fibrotic drugs; thus, research in this area is crucial in addressing this deficiency. Recent investigations elucidating the pathogenesis of skin fibrosis have implicated endogenous reactive oxygen species produced by the multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzyme complex. In this review we discuss Nox enzymes and their role in skin fibrosis. An overview of the Nox enzyme family is presented and their role in the pathogenesis of skin fibrosis is discussed. The mechanisms that Nox enzymes influence specific skin fibrotic disorders are also reviewed. Finally, we describe the therapeutic approaches to ameliorate skin fibrosis by directly targeting Nox enzymes with the use of statins, p47phox subunit modulators, or GKT137831, a competitive inhibitor of Nox enzymes. Nox enzymes can also be targeted indirectly via scavenging ROS with antioxidants. We believe that Nox modulators are worthy of further investigation and have the potential to transform the management of skin fibrosis by dermatologists