20 research outputs found

    Degradation of Potassium Rock by Earthworms and Responses of Bacterial Communities in Its Gut and Surrounding Substrates after Being Fed with Mineral

    Get PDF
    BACKGROUND: Earthworms are an ecosystem's engineers, contributing to a wide range of nutrient cycling and geochemical processes in the ecosystem. Their activities can increase rates of silicate mineral weathering. Their intestinal microbes usually are thought to be one of the key drivers of mineral degradation mediated by earthworms,but the diversities of the intestinal microorganisms which were relevant with mineral weathering are unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this report, we show earthworms' effect on silicate mineral weathering and the responses of bacterial communities in their gut and surrounding substrates after being fed with potassium-bearing rock powder (PBRP). Determination of water-soluble and HNO(3)-extractable elements indicated some elements such as Al, Fe and Ca were significantly released from mineral upon the digestion of earthworms. The microbial communities in earthworms' gut and the surrounding substrates were investigated by amplified ribosomal DNA restriction analysis (ARDRA) and the results showed a higher bacterial diversity in the guts of the earthworms fed with PBRP and the PBRP after being fed to earthworms. UPGMA dendrogram with unweighted UniFrac analysis, considering only taxa that are present, revealed that earthworms' gut and their surrounding substrate shared similar microbiota. UPGMA dendrogram with weighted UniFrac, considering the relative abundance of microbial lineages, showed the two samples from surrounding substrate and the two samples from earthworms' gut had similarity in microbial community, respectively. CONCLUSIONS/SIGNIFICANCE: Our results indicated earthworms can accelerate degradation of silicate mineral. Earthworms play an important role in ecosystem processe since they not only have some positive effects on soil structure, but also promote nutrient cycling of ecosystem by enhancing the weathering of minerals

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    The multiple facets of drug resistance: one history, different approaches

    Full text link

    Andean Microbial Ecosystems: Traces in Hypersaline Lakes About Life Origin

    No full text
    High-altitude Andean lakes (HAALs) represent unique environments on the Earth where one can study the biological chemistry of life in one of its most extreme versions. The Atacama Desert, Argentine Puna, and Bolivian Altiplano harbor hypersaline lakes where polyextremophilic Andean Microbial Ecosystems (AMEs) inhabit microbial mats, evaporitic mats, biofilms (BF), evaporites (EV), and microbialites (Mi). These AMEs have two remarkable characteristics: (i) they are the only ones in the world that inhabit areas ranging from 3100 to 4200 masl; and (ii) they are excellent modern analogues of those which populated the primitive Earth ~3 billion years ago. In this chapter, we will delve into the different kinds of AMEs present in the HAAL, their formation, structure, and their adaptation to conditions largely influenced by volcanic activity, UV radiation, arsenic content, high salinity, low dissolved oxygen content, extreme daily temperature fluctuation, and oligotrophic conditions. All of these physicochemical parameters recreate the early Earth and even extraterrestrial conditions. The relevance of studying these ecosystems does not lie only in scientific-descriptive and/or economic interest. The scientific research community has a great responsibility to address climate change. In this scenario, the AMEs could have played a key role, influencing changes that allowed the origin of aerobic life and those who have faced the great climatic events of the Earth.Fil: Saona Acuña, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumån. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Soria, Mariana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumån. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Villafañe, Patricio Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumån. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Lencina, Agustina Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumån. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Stepanenko, Tatiana Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumån. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Farias, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumån. Planta Piloto de Procesos Industriales Microbiológicos; Argentin

    Modern microbial mats and endoevaporites systems in Andean lakes a general approach

    No full text
    Puna wetlands and salars are a unique extreme environment all over the world, since their locations are in high-altitude saline deserts, largely influenced by volcanic activity. Ultraviolet radiation, arsenic content, high salinity, and low dissolved oxygen content, together with extreme daily temperature fluctuations and oligotrophic conditions, shape an environment that recreates the early Earth and, even more so, extraterrestrial conditions. Microbes inhabiting extreme environments face these conditions with different strategies, including formation of intricate microbial communities with an increasing degree of complexity. In that way, biofilms, mats, endoevaporitic mats, domes, and microbialites have been found to exist in association with salars, lagoons, and even volcanic fumaroles in Central Andean extreme environments. They form microbial ecosystems, where light and O2 availability decrease with depth stratification, promoting functional group diversity. This microbial diversity, together with the geochemistry, may favor the precipitation of minerals. This chapter summarizes general concepts in the environmental microbiology of extreme Andean ecosystems, which are explored throughout this book.Fil: Farias, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumån. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Saona Acuña, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumån. Planta Piloto de Procesos Industriales Microbiológicos; Argentin
    corecore