18 research outputs found

    Insulin-like growth factor axis in pregnancies affected by fetal growth disorders

    Get PDF
    Background: Insulin-like growth factors 1 and 2 (IGF1 and IGF2) and their binding proteins (IGFBPs) are expressed in the placenta and known to regulate fetal growth. DNA methylation is an epigenetic mechanism which involves addition of methyl group to a cytosine base in the DNA forming a methylated cytosine-phosphate-guanine (CpG) dinucleotide which is known to silence gene expression. This silences gene expression, potentially altering the expression of IGFs and their binding proteins. This study investigates the relationship between DNA methylation of components of the IGF axis in the placenta and disorders in fetal growth. Placental samples were obtained from cord insertions immediately after delivery from appropriate, small (defined as birthweight the 90th percentile for the gestation [LGA]) neonates. Placental DNA methylation, mRNA expression and protein levels of components of the IGF axis were determined by pyrosequencing, rtPCR and Western blotting. Results: In the placenta from small for gestational age (SGA) neonates (n = 16), mRNA and protein levels of IGF1 were lower and of IGFBPs (1, 2, 3, 4 and 7) were higher (p < 0.05) compared to appropriately grown neonates (n = 37). In contrast, in the placenta from large for gestational age (LGA) neonates (n = 20), mRNA and protein levels of IGF1 was not different and those of IGFBPs (1, 2, 3 and 4) were lower (p < 0.05) compared to appropriately grown neonates. Compared to appropriately grown neonates, CpG methylation of the promoter regions of IGF1 was higher in SGA neonates. The CpG methylation of the promoter regions of IGFBP1, IGFBP2, IGFBP3, IGFBP4 and IGFBP7 was lower in the placenta from SGA neonates as compared to appropriately grown neonates, but was unchanged in the placenta from LGA neonates. Conclusions: Our results suggest that changes in CpG methylation contribute to the changes in gene expression of components of the IGF axis in fetal growth disorders. Differential methylation of the IGF1 gene and its binding proteins is likely to play a role in the pathogenesis of SGA neonates

    An Analysis of Monte Carlo Simulation as an Estimator of Original Oil In Place and Original Gas In Place

    No full text
    The Monte Carlo Method has been increasingly used in the petroleum industry as a means of quantifying uncertainty. Most commonly, this technique is used to calculate a range of values for hydrocarbon volumes originally in place. The distributions of the input variables input into the Monte Carlo simulator are estimated by obtaining a sufficient number of measurements of reservoir and fluid properties. This report will analyze several depleted or very mature fields for which the ultimate hydrocarbon recovery is known. For each of these fields, distributions of porosity, water saturation, reservoir thickness, and reservoir size are obtained from cores, openhole logs, seismic, and other data. These distributions are input into the Crystal Ball computer program to obtain the cumulative distribution function (CDF) and probability density function (PDF) of oil or gas volume originally in place for each of the fields. By comparing the actual ultimate recovered volumes of hydrocarbons to the range of original in place volumes predicted by the Monte Carlo calculations, the accuracy of the Monte Carlo method will be analyzed.Petroleum and Geosystems Engineerin

    Sound Waves Effectively Assist Tobramycin in Elimination of Pseudomonas aeruginosa Biofilms In vitro

    No full text
    Microbial biofilms are highly refractory to antimicrobials. The aim of this study was to investigate the use of low-frequency vibration therapy (20–20 kHz) on antibiotic-mediated Pseudomonas aeruginosa biofilm eradication. In screening studies, low-frequency vibrations were applied on model biofilm compositions to identify conditions in which surface standing waves were observed. Alginate surface tension and viscosity were also measured. The effect of vibration on P. aeruginosa biofilms was studied using a standard biofilm assay. Subminimal inhibitory concentrations (sub-MIC) of tobramycin (5 ÎŒg/ml) were added to biofilms 3 h prior, during, and immediately after vibration and quantitatively assessed by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay (XTT) and, qualitatively, by confocal laser scanning microscopy (CLSM). The standing waves occurred at frequencies <1,000 Hz. Biofilms vibrated without sub-MIC tobramycin showed a significantly reduced metabolism compared to untreated controls (p < 0.05). Biofilms treated with tobramycin and vibrated simultaneously (450, 530, 610, and 650 Hz), or vibrated (450 and 650 Hz) then treated with tobramycin subsequently, or vibrated (610Hz, 650Hz) after 3 h of tobramycin treatment showed significantly lower metabolism compared to P. aeruginosa biofilm treated with tobramycin alone (p < 0.05). CLSM imaging further confirmed these findings. Low frequency vibrations assisted tobramycin in killing P. aeruginosa biofilms at sub-MIC. Thus, sound waves together with antibiotics are a promising approach in eliminating pathogenic biofilms
    corecore