15 research outputs found

    Modeling genetic epilepsies in a dish

    Full text link
    Human pluripotent stem cells (hPSCs), including embryonic and induced pluripotent stem cells, provide a powerful platform for mechanistic studies of disorders of neurodevelopment and neural networks. hPSC models of autism, epilepsy, and other neurological disorders are also advancing the path toward designing and testing precision therapies. The field is evolving rapidly with the addition of genome‐editing approaches, expanding protocols for the two‐dimensional (2D) differentiation of different neuronal subtypes, and three‐dimensional (3D) human brain organoid cultures. However, the application of these techniques to study complex neurological disorders, including the epilepsies, remains a challenge. Here, we review previous work using both 2D and 3D hPSC models of genetic epilepsies, as well as recent advances in the field. We also describe new strategies for applying these technologies to disease modeling of genetic epilepsies, and discuss current challenges and future directions.Key FindingsZebrafish post‐embryonic intestinal development is slow during the first two weeks due to proliferation pattern.Transformation to the juvenile intestine is preceded by increased proliferation and changes in mitotic pattern.cells integrate between proliferating fold base epithelial cells and may regulate proliferation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153080/1/dvdy79.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153080/2/dvdy79_am.pd

    Ultrasensitive gold micro-structured electrodes enabling the detection of extra-cellular long-lasting potentials in astrocytes populations

    Get PDF
    Ultra-sensitive electrodes for extracellular recordings were fabricated and electrically characterized. A signal detection limit defined by a noise level of 0.3-0.4 mu V for a bandwidth of 12.5 Hz was achieved. To obtain this high sensitivity, large area (4 mm(2)) electrodes were used. The electrode surface is also micro-structured with an array of gold mushroom-like shapes to further enhance the active area. In comparison with a flat gold surface, the micro-structured surface increases the capacitance of the electrode/electrolyte interface by 54%. The electrode low impedance and low noise enable the detection of weak and low frequency quasi-periodic signals produced by astrocytes populations that thus far had remained inaccessible using conventional extracellular electrodes. Signals with 5 mu V in amplitude and lasting for 5-10 s were measured, with a peak-to-peak signal-to-noise ratio of 16. The electrodes and the methodology developed here can be used as an ultrasensitive electrophysiological tool to reveal the synchronization dynamics of ultra-slow ionic signalling between non-electrogenic cells.Portuguese Foundation for Science and Technology (FCT), through the project "Implantable organic devices for advanced therapies" (INNOVATE) [PTDC/EEI-AUT/5442/2014]; Instituto de Telecomunicacoes [UID/Multi/04326/2013]; Associated Laboratory - Institute of Nanoscience and Nanotechnology [POCI-01-0145-FEDER-016623]; [PTDC/CTM-NAN/3146/2014

    Modeling genetic epilepsies in a dish

    No full text
    corecore