18 research outputs found

    Polyhedra Circuits and Their Applications

    Get PDF
    To better compute the volume and count the lattice points in geometric objects, we propose polyhedral circuits. Each polyhedral circuit characterizes a geometric region in Rd . They can be applied to represent a rich class of geometric objects, which include all polyhedra and the union of a finite number of polyhedron. They can be also used to approximate a large class of d-dimensional manifolds in Rd . Barvinok [3] developed polynomial time algorithms to compute the volume of a rational polyhedron, and to count the number of lattice points in a rational polyhedron in Rd with a fixed dimensional number d. Let d be a fixed dimensional number, TV(d,n) be polynomial time in n to compute the volume of a rational polyhedron, TL(d,n) be polynomial time in n to count the number of lattice points in a rational polyhedron, where n is the total number of linear inequalities from input polyhedra, and TI(d,n) be polynomial time in n to solve integer linear programming problem with n be the total number of input linear inequalities. We develop algorithms to count the number of lattice points in geometric region determined by a polyhedral circuit in O(nd⋅rd(n)⋅TV(d,n)) time and to compute the volume of geometric region determined by a polyhedral circuit in O(n⋅rd(n)⋅TI(d,n)+rd(n)TL(d,n)) time, where rd(n) is the maximum number of atomic regions that n hyperplanes partition Rd . The applications to continuous polyhedra maximum coverage problem, polyhedra maximum lattice coverage problem, polyhedra (1−β) -lattice set cover problem, and (1−β) -continuous polyhedra set cover problem are discussed. We also show the NP-hardness of the geometric version of maximum coverage problem and set cover problem when each set is represented as union of polyhedra

    Prolonged Depression-Like Behavior Caused by Immune Challenge: Influence of Mouse Strain and Social Environment

    Get PDF
    Immune challenge by bacterial lipopolysaccharide (LPS) causes short-term behavioral changes indicative of depression. The present study sought to explore whether LPS is able to induce long-term changes in depression-related behavior and whether such an effect depends on mouse strain and social context. LPS (0.83 mg/kg) or vehicle was administered intraperitoneally to female CD1 and C57BL/6 mice that were housed singly or in groups of 4. Depression-like behavior was assessed with the forced swim test (FST) 1 and 28 days post-treatment. Group-housed CD1 mice exhibited depression-like behavior 1 day post-LPS, an effect that leveled off during the subsequent 28 days, while the behavior of singly housed CD1 mice was little affected. In contrast, singly housed C57BL/6 mice responded to LPS with an increase in depression-like behavior that was maintained for 4 weeks post-treatment and confirmed by the sucrose preference test. Group-housed C57BL/6 mice likewise displayed an increased depression-like behavior 4 weeks post-treatment. The behavioral changes induced by LPS in C57BL/6 mice were associated with a particularly pronounced rise of interleukin-6 in blood plasma within 1 day post-treatment and with changes in the dynamics of the corticosterone response to the FST. The current data demonstrate that immune challenge with LPS is able to induce prolonged depression-like behavior, an effect that depends on genetic background (strain). The discovery of an experimental model of long-term depression-like behavior after acute immune challenge is of relevance to the analysis of the epigenetic and pathophysiologic mechanisms of immune system-related affective disorders
    corecore