66 research outputs found

    The Comprehensive Native Interactome of a Fully Functional Tagged Prion Protein

    Get PDF
    The enumeration of the interaction partners of the cellular prion protein, PrPC, may help clarifying its elusive molecular function. Here we added a carboxy proximal myc epitope tag to PrPC. When expressed in transgenic mice, PrPmyc carried a GPI anchor, was targeted to lipid rafts, and was glycosylated similarly to PrPC. PrPmyc antagonized the toxicity of truncated PrP, restored prion infectibility of PrPC-deficient mice, and was physically incorporated into PrPSc aggregates, indicating that it possessed all functional characteristics of genuine PrPC. We then immunopurified myc epitope-containing protein complexes from PrPmyc transgenic mouse brains. Gentle differential elution with epitope-mimetic decapeptides, or a scrambled version thereof, yielded 96 specifically released proteins. Quantitative mass spectrometry with isotope-coded tags identified seven proteins which co-eluted equimolarly with PrPC and may represent component of a multiprotein complex. Selected PrPC interactors were validated using independent methods. Several of these proteins appear to exert functions in axomyelinic maintenance

    Aerosols Transmit Prions to Immunocompetent and Immunodeficient Mice

    Get PDF
    Prions, the agents causing transmissible spongiform encephalopathies, colonize the brain of hosts after oral, parenteral, intralingual, or even transdermal uptake. However, prions are not generally considered to be airborne. Here we report that inbred and crossbred wild-type mice, as well as tga20 transgenic mice overexpressing PrPC, efficiently develop scrapie upon exposure to aerosolized prions. NSE-PrP transgenic mice, which express PrPC selectively in neurons, were also susceptible to airborne prions. Aerogenic infection occurred also in mice lacking B- and T-lymphocytes, NK-cells, follicular dendritic cells or complement components. Brains of diseased mice contained PrPSc and transmitted scrapie when inoculated into further mice. We conclude that aerogenic exposure to prions is very efficacious and can lead to direct invasion of neural pathways without an obligatory replicative phase in lymphoid organs. This previously unappreciated risk for airborne prion transmission may warrant re-thinking on prion biosafety guidelines in research and diagnostic laboratories

    Serotonin synthesis, release and reuptake in terminals: a mathematical model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system.</p> <p>Methods</p> <p>We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data.</p> <p>Results</p> <p>We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct <it>in silico </it>experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to experimental data. Finally, we study how the properties of the the serotonin transporter and the autoreceptors give rise to the time courses of extracellular serotonin in various projection regions after a dose of fluoxetine.</p> <p>Conclusions</p> <p>Serotonergic systems must respond robustly to important biological signals, while at the same time maintaining homeostasis in the face of normal biological fluctuations in inputs, expression levels, and firing rates. This is accomplished through the cooperative effect of many different homeostatic mechanisms including special properties of the serotonin transporters and the serotonin autoreceptors. Many difficult questions remain in order to fully understand how serotonin biochemistry affects serotonin electrophysiology and vice versa, and how both are changed in the presence of selective serotonin reuptake inhibitors. Mathematical models are useful tools for investigating some of these questions.</p

    TRP Channels: Their Function and Potentiality as Drug Targets

    Full text link

    A new era for understanding amyloid structures and disease

    Get PDF
    The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention

    DNA microarray reveals novel genes induced by mechanical forces in fetal lung type II epithelial cells.

    No full text
    Mechanical forces are essential for normal fetal lung development. However, the cellular and molecular mechanisms regulating this process are still poorly defined. In this study, we used oligonucleotide microarrays to investigate gene expression in cultured embryonic d 19 rat fetal lung type II epithelial cells exposed to a level of mechanical strain similar to the developing lung. Significance Analysis of Microarrays (SAM) identified 92 genes differentially expressed by strain. Interestingly, several members of the solute carrier family of amino acid transporter (Slc7a1, Slc7a3, Slc6a9, and tumor-associated protein 1) genes involved in amino acid synthesis (Phgdh, Psat1, Psph, Cars, and Asns), as well as the amiloride-sensitive epithelial sodium channel gene (Scnn1a) were up-regulated by the application of force. These results were confirmed by quantitative real-time PCR (qRT-PCR). Thus, this study identifies genes induced by strain that may be important for amino acid signaling pathways and protein synthesis in fetal type II cells. In addition, these data suggest that mechanical forces may contribute to facilitate lung fluid reabsorption in preparation for birth. Taken together, the present investigation provides further insights into how mechanical forces may modulate fetal lung development

    Use of an integrated strip-free blood glucose monitoring system increases frequency of self-monitoring and improves glycemic control: Results from the ExAct study

    No full text
    Aims: We investigated the impact of using an integrated, strip-free system compared to the use of single-strip systems on testing frequency and glycemic control in individuals with insulin-treated diabetes. Methods: This multinational, comparative, cluster-randomized, observational study included 311 patients with type 1 and insulin-treated type 2 diabetes who were performing SMBG at suboptimal frequencies. Sites were cluster-randomized to “integrated strip-free” system (EXP group) or any “single-strip” system (CNL group). Testing frequency and HbA1c were measured at baseline, 12 weeks and 24 weeks. Results: At week 24, the EXP group showed an increase in SMBG frequency from baseline of 4.17 tests/week (95% CI 2.76, 5.58) compared with an increase of 0.53 tests/week (95% CI −0.73, 1.79) among CNL patients, resulting in a between-group difference of 3.63 tests/week (p < 0.0002). Mixed-effects models for repeated measurements (MMRM) controlling for baseline frequency of testing, country and clinical site confirmed a higher SMBG testing frequency in the EXP group compared to the CNL group, with a between-group difference of 2.70 tests/week (p < 0.01). Univariate analysis showed greater HbA1c reductions in the EXP group than CNL group: −0.44% (95% CI −0.59, −0.29) vs. −0.13% (95% CI −0.27, 0.01), respectively, p < 0.0002. MMRM analyses confirmed these HbA1c reductions. A greater percentage of EXP than CNL patients achieved HbA1c reductions of ≥0.5%: 45.1% vs. 29.1%, respectively, p < 0.01. Conclusions: The use of an integrated, strip-free SMBG system improved testing adherence and was associated with improvements in glycemic control
    corecore