40 research outputs found

    Associations of Insulin and Insulin-Like Growth Factors with Physical Performance in Old Age in the Boyd Orr and Caerphilly Studies

    Get PDF
    Objective Insulin and the insulin-like growth factor (IGF) system regulate growth and are involved in determining muscle mass, strength and body composition. We hypothesised that IGF-I and IGF-II are associated with improved, and insulin with worse, physical performance in old age. Methods Physical performance was measured using the get-up and go timed walk and flamingo balance test at 63–86 years. We examined prospective associations of insulin, IGF-I, IGF-II and IGFBP-3 with physical performance in the UK-based Caerphilly Prospective Study (CaPS; n = 739 men); and cross-sectional insulin, IGF-I, IGF-II, IGFBP-2 and IGFBP-3 in the Boyd Orr cohort (n = 182 men, 223 women). Results In confounder-adjusted models, there was some evidence in CaPS that a standard deviation (SD) increase in IGF-I was associated with 1.5% faster get-up and go test times (95% CI: −0.2%, 3.2%; p = 0.08), but little association with poor balance, 19 years later. Coefficients in Boyd Orr were in the same direction as CaPS, but consistent with chance. Higher levels of insulin were weakly associated with worse physical performance (CaPS and Boyd Orr combined: get-up and go time = 1.3% slower per SD log-transformed insulin; 95% CI: 0.0%, 2.7%; p = 0.07; OR poor balance 1.13; 95% CI; 0.98, 1.29; p = 0.08), although associations were attenuated after controlling for body mass index (BMI) and co-morbidities. In Boyd Orr, a one SD increase in IGFBP-2 was associated with 2.6% slower get-up and go times (95% CI: 0.4%, 4.8% slower; p = 0.02), but this was only seen when controlling for BMI and co-morbidities. There was no consistent evidence of associations of IGF-II, or IGFBP-3 with physical performance. Conclusions There was some evidence that high IGF-I and low insulin levels in middle-age were associated with improved physical performance in old age, but estimates were imprecise. Larger cohorts are required to confirm or refute the findings

    Interactions between Plasma Levels of 25-Hydroxyvitamin D, Insulin-Like Growth Factor (IGF)-1 and C-Peptide with Risk of Colorectal Cancer

    Get PDF
    Background: Vitamin D status and levels of insulin-like growth factor (IGF)-1 and C-peptide have been implicated in colorectal carcinogenesis. However, in contrast to vitamin D IGF-1 is not an easily modifiable risk factor. Methods: Combining data from the Health Professionals Follow up Study (HPFS) and the Nurses' Health Study cohort (NHS) additive and multiplicative interactions were examined between plasma 25-hydroxyvitamin D (25(OH)D) and IGF-1, IGFBP-3 as well as C-peptide levels in 499 cases and 992 matched controls. For the various analytes, being high or low was based on being either above (or equal) or below the medians, respectively. Results: Compared to participants with high 25(OH)D and low IGF-1/IGFBP-3 ratio (reference group), participants with a high IGF-1/IGFBP-3 ratio were at elevated risk of colorectal cancer when 25(OH)D was low (odds ratio (OR): 2.05 (95% CI: 1.43 to 2.92), but not when 25(OH)D was high (OR:1.20 (95% CI: 0.84 to 1.71, p(interaction): additive = 0.06, multiplicative = 0.25). Similarly, compared to participants with high 25(OH)D and low molar IGF-1/IGFBP-3 ratio and low C-peptide levels (reference group), participants with a combination of either high IGF-1/IGFBP-3 ratio or high C-peptide were at elevated risk for colorectal cancer when 25(OH)D was low (OR = 1.90, 95% CI: 1.22 to 2.94) but not when 25(OH)D was high (OR = 1.15, 95% CI: 0.74 to 1.77, p(interaction): additive = 0.004; multiplicative = 0.04). Conclusion: The results from this study suggest that improving vitamin D status may help lower risk of colorectal cancer associated with higher IGF-1/IGFBP-3 ratio or C-peptide levels

    The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions

    Get PDF
    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi

    Trampoline Related Injuries

    No full text
    Category: Trauma Introduction/Purpose: Jump parks (or trampoline parks) have become one of the fastest growing recreational businesses in the United States. With their increasing popularity, notable changes in trampoline related injuries might be evident, particularly involving the lower extremity. There is no published data dedicated to adult trampoline injuries and little information regarding the safety profiles of commercial jump parks. Methods: We conducted a retrospective review including all patients sustaining trampoline related injuries presenting during a two-year period. Data collection included patient demographics and injury characteristics of trampoline injuries in the domestic setting and at commercial jump parks. Results: One hundred fifty patients (34%) sustained injuries at commercial jump parks versus 289 patients (66%) on home trampolines. Fifty-five percent of the jump park injuries were fractures/dislocations, compared to 44% of the home trampoline injuries. Eighteen adults sustained fractures or dislocations at the jump park (45%), while only five adults sustained fractures or dislocations using home trampolines (17%). Seventeen (94%) and 2 (40%) represented adult lower extremity injuries in jump parks and home trampolines respectively. In children, 47 (72%) of the jump park fractures/dislocations were lower extremity, and 41 (33%) of the home trampoline fractures/dislocations were lower extremity. Ten (9%) pediatric and 9 (23%) adult jump park patients required operative intervention, compared to 17 (7%) pediatric and 3 (10%) adult home trampoline patients requiring surgery. Conclusion: Emergency room visits, hospital admissions, and surgical intervention secondary to jump park related injuries are not uncommon in children and adults. There were a higher percentage of total fractures or dislocations, adult fractures, lower extremity fractures, and operative interventions among patients with commercial jump park injuries compared with those who sustained home trampoline injuries
    corecore