1,961 research outputs found

    Low- Versus High-Dose Methylprednisolone in Adult Patients With Coronavirus Disease 2019: Less Is More

    Get PDF
    Background: Corticosteroids use in severe coronavirus disease 2019 (COVID-19) improves survival; however, the optimal dose is not established. We aim to evaluate clinical outcomes in patients with severe COVID-19 receiving high-dose corticosteroids (HDC) versus low-dose corticosteroids (LDC). Methods: This was a quasi-experimental study conducted at a large, quaternary care center in Michigan. A corticosteroid dose change was implemented in the standardized institutional treatment protocol on November 17, 2020. All patients admitted with severe COVID-19 that received corticosteroids were included. Consecutive patients in the HDC group (September 1 to November 15, 2020) were compared to the LDC group (November 30, 2020 to January 20, 2021). High-dose corticosteroids was defined as 80 mg of methylprednisolone daily in 2 divided doses, and LDC was defined as 32-40 mg of methylprednisolone daily in 2 divided doses. The primary outcome was all-cause 28-day mortality. Secondary outcomes included progression to mechanical ventilation, hospital length of stay (LOS), discharge on supplemental oxygen, and corticosteroid-associated adverse events. Results: Four-hundred seventy patients were included: 218 (46%) and 252 (54%) in the HDC and LDC groups, respectively. No difference was observed in 28-day mortality (14.5% vs 13.5%, P = .712). This finding remained intact when controlling for additional variables (odds ratio, 0.947; confidence interval, 0.515-1.742; P = .861). Median hospital LOS was 6 and 5 days in the HDC and LDC groups, respectively (P \u3c .001). No differences were noted in any of the other secondary outcomes. Conclusions: Low-dose methylprednisolone had comparable outcomes including mortality to high-dose methylprednisolone for the treatment of severe COVID-19

    Low- Versus High-Dose Methylprednisolone in Adult Patients With Coronavirus Disease 2019: Less Is More

    Get PDF
    Background: Corticosteroids use in severe coronavirus disease 2019 (COVID-19) improves survival; however, the optimal dose is not established. We aim to evaluate clinical outcomes in patients with severe COVID-19 receiving high-dose corticosteroids (HDC) versus low-dose corticosteroids (LDC). Methods: This was a quasi-experimental study conducted at a large, quaternary care center in Michigan. A corticosteroid dose change was implemented in the standardized institutional treatment protocol on November 17, 2020. All patients admitted with severe COVID-19 that received corticosteroids were included. Consecutive patients in the HDC group (September 1 to November 15, 2020) were compared to the LDC group (November 30, 2020 to January 20, 2021). High-dose corticosteroids was defined as 80 mg of methylprednisolone daily in 2 divided doses, and LDC was defined as 32-40 mg of methylprednisolone daily in 2 divided doses. The primary outcome was all-cause 28-day mortality. Secondary outcomes included progression to mechanical ventilation, hospital length of stay (LOS), discharge on supplemental oxygen, and corticosteroid-associated adverse events. Results: Four-hundred seventy patients were included: 218 (46%) and 252 (54%) in the HDC and LDC groups, respectively. No difference was observed in 28-day mortality (14.5% vs 13.5%, P = .712). This finding remained intact when controlling for additional variables (odds ratio, 0.947; confidence interval, 0.515-1.742; P = .861). Median hospital LOS was 6 and 5 days in the HDC and LDC groups, respectively (P \u3c .001). No differences were noted in any of the other secondary outcomes. Conclusions: Low-dose methylprednisolone had comparable outcomes including mortality to high-dose methylprednisolone for the treatment of severe COVID-19

    Evaluation of intramuscular olanzapine and ziprasidone in the medically ill

    Get PDF
    Introduction: Despite the paucity of studies evaluating short-acting parenteral second-generation antipsychotics in the medically ill, their use in this population has increased. The purpose of this study was to characterize the use of IM olanzapine and ziprasidone in the medically ill at an academic medical center. Methods: This is a retrospective medical record review of all patients who received IM olanzapine or ziprasidone on nonpsychiatric inpatient units at a large academic medical center from August 1, 2015 to July 31, 2017. The primary endpoint characterized the indication for use. Secondary endpoints included safety, effectiveness, and prescribing patterns. Results: After exclusion criteria, a total of 100 patients were included in this study, predominantly white males with a mean age of 56 years. Seventy-four percent of patients received IM ziprasidone and 26% received IM olanzapine. The most common indications for use were agitation of nonpsychotic origin (40%) and delirium (33%). Patients received IM olanzapine and ziprasidone when their use was contraindicated (26.9% vs 9.5%, respectively). Discussion: Intramuscular second-generation antipsychotics are increasingly being used in the medically ill for delirium and agitation. Our study confirms these were the most common indications for IM second-generation antipsychotic use in this population. Additionally, their use appeared to be well-tolerated, and no patient developed Torsades de Pointes even when combined with other agents that putatively increase QTc. Given the retrospective, single-center, nonrandomized design of this study, the safety and effectiveness of these parenteral second-generation antipsychotics in common causes of acute agitation should continue to be further evaluated

    Discrimination of young and mature leaves of Melicope ptelefolia using 1H NMR and multivariate data analysis

    Get PDF
    The ‘Ulam’, a traditional Malay dish, are plants that can be eaten raw, as a form of local salad. The shoots and young leaves of Melicope ptelefolia are among the popular species, believed to be high in nutritional and medicinal values. The metabolomic fingerprinting analysis of the ethanolic extracts of leaves of M. ptelefolia was carried out using 1H Nuclear Magnetic Resonance (NMR) spectroscopy and multivariate data analysis in order to differentiate young and mature leaves and to evaluate the variation of their chemical composition. Principle component analysis (PCA) of the 1H NMR spectra showed a clear discrimination between the young and mature leaves extracts by PC3 and PC4. The compounds responsible for the differentiation were identified by comparison of 1H NMR chemical shifts and qualitative HPLC. The young leaves were found to be richer in fatty acids and the levels of the three marker compounds, p-O-geranylcoumaric acid, 2,4,6-trihydroxy-3-geranylacetophenone and 2,4,6-trihydroxy 3-prenylacetophenone, were clearly higher. The mature leaves contain higher levels of sugars and glycosidic components

    Bioassay-guided identification of an anti-inflammatory prenylated acylphloroglucinol from Melicope ptelefolia and molecular insights into its interaction with 5-lipoxygenase.

    Get PDF
    A bioassay-guided investigation of Melicope ptelefolia Champ ex Benth (Rutaceae) resulted in the identification of an acyphloroglucinol, 2,4,6-trihydroxy-3-geranylacetophenone or tHGA, as the active principle inhibiting soybean 15-LOX. The anti-inflammatory action was also demonstrated on human leukocytes, where the compound showed prominent inhibitory activity against human PBML 5-LOX, with an IC 50 value of 0.42 μM, very close to the effect produced by the commonly used standard, NDGA. The compound concentration-dependently inhibited 5-LOX product synthesis, specifically inhibiting cysteinyl leukotriene LTC4 with an IC 50 value of 1.80 μM, and showed no cell toxicity effects. The anti-inflammatory action does not seem to proceed via redox or metal chelating mechanism since the compound tested negative for these bioactivities. Further tests on cyclooxygenases indicated that the compound acts via a dual LOX/COX inhibitory mechanism, with greater selectivity for 5-LOX and COX-2 (IC 50 value of 0.40 μM). The molecular features that govern the 5-LOX inhibitory activity was thus explored using in silico docking experiments. The residues Ile 553 and Hie 252 were the most important residues in the interaction, each contributing significant energy values of 13.45 (electrostatic) and 5.40 kcal/mol (electrostatic and Van der Waals), respectively. The hydroxyl group of the phloroglucinol core of the compound forms a 2.56 Å hydrogen bond with the side chain of the carboxylate group of Ile 553. Both Ile 553 and Hie 252 are crucial amino acid residues which chelate with the metal ion in the active site. Distorting the geometry of these ligands could be the reason for the inhibition activity shown by tHGA. The molecular simulation studies supported the bioassay results and served as a good model for understanding the way tHGA binds in the active site of human 5-LOX enzyme

    Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on growth and osteogenic differentiation of human mesenchymal stem cells

    Get PDF
    Mesenchymal stem cell differentiation of osteoblasts is triggered by a series of signaling processes including integrin and bone morphogenetic protein (BMP), which therefore act in a cooperative manner. The aim of this study was to analyze whether these processes can be remodeled in an artificial poly-(l)-lactide acid (PLLA) based nanofiber scaffold. Matrices composed of PLLA-collagen type I or BMP-2 incorporated PLLA-collagen type I were seeded with human mesenchymal stem cells (hMSC) and cultivated over a period of 22 days, either under growth or osteoinductive conditions. During the course of culture, gene expression of alkaline phosphatase (ALP), osteocalcin (OC) and collagen I (COL-I) as well as Smad5 and focal adhesion kinase (FAK), two signal transduction molecules involved in BMP-2 or integrin signaling were analyzed. Furthermore, calcium and collagen I deposition, as well as cell densities and proliferation, were determined using fluorescence microscopy. The incorporation of BMP-2 into PLLA-collagen type I nanofibers resulted in a decrease in diameter as well as pore sizes of the scaffold. Mesenchymal stem cells showed better adherence and a reduced proliferation on BMP-containing scaffolds. This was accompanied by an increase in gene expression of ALP, OC and COL-I. Furthermore the presence of BMP-2 resulted in an upregulation of FAK, while collagen had an impact on the gene expression of Smad5. Therefore these different strategies can be combined in order to enhance the osteoblast differentiation of hMSC on PLLA based nanofiber scaffold. By doing this, different signal transduction pathways seem to be up regulated

    Electrospun PLLA Nanofiber Scaffolds and Their Use in Combination with BMP-2 for Reconstruction of Bone Defects

    Get PDF
    Introduction Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM). Materials and Methods The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5). Results PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups. Conclusion Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus

    Possible participation of nitric oxide/cyclic guanosine monophosphate/protein kinase C/ATP-sensitive K + channels pathway in the systemic antinociception of flavokawin B.

    Get PDF
    The possible mechanisms of action in the antinociceptive activity induced by systemic administration (intraperitoneal, i.p.) of flavokawin B (FKB) were analysed using chemical models of nociception in mice. It was demonstrated that i.p. administration of FKB to the mice at 0.3, 1.0, 3.0 and 10 mg/kg produced significant dose-related reduction in the number of abdominal constrictions. The antinociception induced by FKB in the acetic acid test was significantly attenuated by i.p. pre-treatment of mice with l-arginine, the substrate for nitric oxide synthase or glibenclamide, the ATP-sensitive K+ channel inhibitor, but was enhanced by methylene blue, the non-specific guanylyl cyclase inhibitor. FKB also produced dose-dependent inhibition of licking response caused by intraplantar injection of phorbol 12-myristate 13-acetate, a protein kinase C activator (PKC). Together, these data indicate that the NO/cyclic guanosine monophosphate/PKC/ATP-sensitive K+ channel pathway possibly participated in the antinociceptive action induced by FKB
    corecore