10,368 research outputs found
Eosinophil and T Cell Markers Predict Functional Decline in COPD Patients
BACKGROUND. The major marker utilized to monitor COPD patients is forced expiratory volume in one second (FEV1). However, asingle measurement of FEV1 cannot reliably predict subsequent decline. Recent studies indicate that T lymphocytes and eosinophils are important determinants of disease stability in COPD. We therefore measured cytokine levels in the lung lavage fluid and plasma of COPD patients in order to determine if the levels of T cell or eosinophil related cytokines were predictive of the future course of the disease. METHODS. Baseline lung lavage and plasma samples were collected from COPD subjects with moderately severe airway obstruction and emphysematous changes on chest CT. The study participants were former smokers who had not had a disease exacerbation within the past six months or used steroids within the past two months. Those subjects who demonstrated stable disease over the following six months (ΔFEV1 % predicted = 4.7 ± 7.2; N = 34) were retrospectively compared with study participants who experienced a rapid decline in lung function (ΔFEV1 % predicted = -16.0 ± 6.0; N = 16) during the same time period and with normal controls (N = 11). Plasma and lung lavage cytokines were measured from clinical samples using the Luminex multiplex kit which enabled the simultaneous measurement of several T cell and eosinophil related cytokines. RESULTS AND DISCUSSION. Stable COPD participants had significantly higher plasma IL-2 levels compared to participants with rapidly progressive COPD (p = 0.04). In contrast, plasma eotaxin-1 levels were significantly lower in stable COPD subjects compared to normal controls (p < 0.03). In addition, lung lavage eotaxin-1 levels were significantly higher in rapidly progressive COPD participants compared to both normal controls (p < 0.02) and stable COPD participants (p < 0.05). CONCLUSION. These findings indicate that IL-2 and eotaxin-1 levels may be important markers of disease stability in advanced emphysema patients. Prospective studies will need to confirm whether measuring IL-2 or eotaxin-1 can identify patients at risk for rapid disease progression.National Heart, Lung, and Blood Institute (NO1-HR-96140, NO1-HR-96141-001, NO1-HR-96144, NO1-HR-96143; NO1-HR-96145; NO1-HR-96142, R01HL086936-03); The Flight Attendant Medical Research Institute; the Jo-Ann F. LeBuhn Center for Chest Diseas
A single-photon transistor using nano-scale surface plasmons
It is well known that light quanta (photons) can interact with each other in
nonlinear media, much like massive particles do, but in practice these
interactions are usually very weak. Here we describe a novel approach to
realize strong nonlinear interactions at the single-photon level. Our method
makes use of recently demonstrated efficient coupling between individual
optical emitters and tightly confined, propagating surface plasmon excitations
on conducting nanowires. We show that this system can act as a nonlinear
two-photon switch for incident photons propagating along the nanowire, which
can be coherently controlled using quantum optical techniques. As a novel
application, we discuss how the interaction can be tailored to create a
single-photon transistor, where the presence or absence of a single incident
photon in a ``gate'' field is sufficient to completely control the propagation
of subsequent ``signal'' photons.Comment: 20 pages, 4 figure
A Characterization of Scale Invariant Responses in Enzymatic Networks
An ubiquitous property of biological sensory systems is adaptation: a step
increase in stimulus triggers an initial change in a biochemical or
physiological response, followed by a more gradual relaxation toward a basal,
pre-stimulus level. Adaptation helps maintain essential variables within
acceptable bounds and allows organisms to readjust themselves to an optimum and
non-saturating sensitivity range when faced with a prolonged change in their
environment. Recently, it was shown theoretically and experimentally that many
adapting systems, both at the organism and single-cell level, enjoy a
remarkable additional feature: scale invariance, meaning that the initial,
transient behavior remains (approximately) the same even when the background
signal level is scaled. In this work, we set out to investigate under what
conditions a broadly used model of biochemical enzymatic networks will exhibit
scale-invariant behavior. An exhaustive computational study led us to discover
a new property of surprising simplicity and generality, uniform linearizations
with fast output (ULFO), whose validity we show is both necessary and
sufficient for scale invariance of enzymatic networks. Based on this study, we
go on to develop a mathematical explanation of how ULFO results in scale
invariance. Our work provides a surprisingly consistent, simple, and general
framework for understanding this phenomenon, and results in concrete
experimental predictions
Observation of Effective Pseudospin Scattering in ZrSiS
3D Dirac semimetals are an emerging class of materials that possess
topological electronic states with a Dirac dispersion in their bulk. In
nodal-line Dirac semimetals, the conductance and valence bands connect along a
closed path in momentum space, leading to the prediction of pseudospin vortex
rings and pseudospin skyrmions. Here, we use Fourier transform scanning
tunneling spectroscopy (FT-STS) at 4.5 K to resolve quasiparticle interference
(QPI) patterns at single defect centers on the surface of the line nodal
semimetal zirconium silicon sulfide (ZrSiS). Our QPI measurements show
pseudospin conservation at energies close to the line node. In addition, we
determine the Fermi velocity to be eV {\AA} in the
{\Gamma}-M direction ~300 meV above the Fermi energy , and the line node
to be ~140 meV above . More importantly, we find that certain scatterers
can introduce energy-dependent non-preservation of pseudospins, giving rise to
effective scattering between states with opposite valley pseudospin deep inside
valence and conduction bands. Further investigations of quasiparticle
interference at the atomic level will aid defect engineering at the synthesis
level, needed for the development of lower-power electronics via
dissipationless electronic transport in the future
A thermodynamic unification of jamming
Fragile materials ranging from sand to fire-retardant to toothpaste are able
to exhibit both solid and fluid-like properties across the jamming transition.
Unlike ordinary fusion, systems of grains, foams and colloids jam and cease to
flow under conditions that still remain unknown. Here we quantify jamming via a
thermodynamic approach by accounting for the structural ageing and the
shear-induced compressibility of dry sand. Specifically, the jamming threshold
is defined using a non-thermal temperature that measures the 'fluffiness' of a
granular mixture. The thermodynamic model, casted in terms of pressure,
temperature and free-volume, also successfully predicts the entropic data of
five molecular glasses. Notably, the predicted configurational entropy avoids
the Kauzmann paradox entirely. Without any free parameters, the proposed
equation-of-state also governs the mechanism of shear-banding and the
associated features of shear-softening and thickness-invariance.Comment: 16 pgs double spaced. 4 figure
Locality in Theory Space
Locality is a guiding principle for constructing realistic quantum field
theories. Compactified theories offer an interesting context in which to think
about locality, since interactions can be nonlocal in the compact directions
while still being local in the extended ones. In this paper, we study locality
in "theory space", four-dimensional Lagrangians which are dimensional
deconstructions of five-dimensional Yang-Mills. In explicit ultraviolet (UV)
completions, one can understand the origin of theory space locality by the
irrelevance of nonlocal operators. From an infrared (IR) point of view, though,
theory space locality does not appear to be a special property, since the
lowest-lying Kaluza-Klein (KK) modes are simply described by a gauged nonlinear
sigma model, and locality imposes seemingly arbitrary constraints on the KK
spectrum and interactions. We argue that these constraints are nevertheless
important from an IR perspective, since they affect the four-dimensional cutoff
of the theory where high energy scattering hits strong coupling. Intriguingly,
we find that maximizing this cutoff scale implies five-dimensional locality. In
this way, theory space locality is correlated with weak coupling in the IR,
independent of UV considerations. We briefly comment on other scenarios where
maximizing the cutoff scale yields interesting physics, including theory space
descriptions of QCD and deconstructions of anti-de Sitter space.Comment: 40 pages, 11 figures; v2: references and clarifications added; v3:
version accepted by JHE
Frequency Shift of Carbon-Nanotube-Based Mass Sensor Using Nonlocal Elasticity Theory
The frequency equation of carbon-nanotube-based cantilever sensor with an attached mass is derived analytically using nonlocal elasticity theory. According to the equation, the relationship between the frequency shift of the sensor and the attached mass can be obtained. When the nonlocal effect is not taken into account, the variation of frequency shift with the attached mass on the sensor is compared with the previous study. According to this study, the result shows that the frequency shift of the sensor increases with increasing the attached mass. When the attached mass is small compared with that of the sensor, the nonlocal effect is obvious and increasing nonlocal parameter decreases the frequency shift of the sensor. In addition, when the location of the attached mass is closer to the free end, the frequency shift is more significant and that makes the sensor reveal more sensitive. When the attached mass is small, a high sensitivity is obtained
Coherent spinor dynamics in a spin-1 Bose condensate
Collisions in a thermal gas are perceived as random or incoherent as a
consequence of the large numbers of initial and final quantum states accessible
to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a
degenerate Fermi gas, the phase space accessible to low energy collisions is so
restricted that collisions be-come coherent and reversible. Here, we report the
observation of coherent spin-changing collisions in a gas of spin-1 bosons.
Starting with condensates occupying two spin states, a condensate in the third
spin state is coherently and reversibly created by atomic collisions. The
observed dynamics are analogous to Josephson oscillations in weakly connected
superconductors and represent a type of matter-wave four-wave mixing. The
spin-dependent scattering length is determined from these oscillations to be
-1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of
the system by applying differential phase shifts to the spin states using
magnetic fields.Comment: 19 pages, 3 figure
Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation
Acute myeloid leukemia (AML) involves a block in terminal differentiation of
the myeloid lineage and uncontrolled proliferation of a progenitor state. Using
phorbol myristate acetate (PMA), it is possible to overcome this block in THP-1
cells (an M5-AML containing the MLL-MLLT3 fusion), resulting in differentiation
to an adherent monocytic phenotype. As part of FANTOM4, we used microarrays to
identify 23 microRNAs that are regulated by PMA. We identify four PMA-induced
micro- RNAs (mir-155, mir-222, mir-424 and mir-503) that when overexpressed
cause cell-cycle arrest and partial differentiation and when used in
combination induce additional changes not seen by any individual microRNA. We
further characterize these prodifferentiative microRNAs and show that mir-155
and mir-222 induce G2 arrest and apoptosis, respectively. We find mir-424 and
mir-503 are derived from a polycistronic precursor mir-424-503 that is under
repression by the MLL-MLLT3 leukemogenic fusion. Both of these microRNAs
directly target cell-cycle regulators and induce G1 cell-cycle arrest when
overexpressed in THP-1. We also find that the pro-differentiative mir-424 and
mir-503 downregulate the anti-differentiative mir-9 by targeting a site in its
primary transcript. Our study highlights the combinatorial effects of multiple
microRNAs within cellular systems.Comment: 45 pages 5 figure
Development of Photonic Crystal Fiber Based Gas/ Chemical Sensors
The development of highly-sensitive and miniaturized sensors that capable of
real-time analytes detection is highly desirable. Nowadays, toxic or colorless
gas detection, air pollution monitoring, harmful chemical, pressure, strain,
humidity, and temperature sensors based on photonic crystal fiber (PCF) are
increasing rapidly due to its compact structure, fast response and efficient
light controlling capabilities. The propagating light through the PCF can be
controlled by varying the structural parameters and core-cladding materials, as
a result, evanescent field can be enhanced significantly which is the main
component of the PCF based gas/chemical sensors. The aim of this chapter is to
(1) describe the principle operation of PCF based gas/ chemical sensors, (2)
discuss the important PCF properties for optical sensors, (3) extensively
discuss the different types of microstructured optical fiber based gas/
chemical sensors, (4) study the effects of different core-cladding shapes, and
fiber background materials on sensing performance, and (5) highlight the main
challenges of PCF based gas/ chemical sensors and possible solutions
- …