8 research outputs found

    Liquid biopsy in central nervous system metastases: a RANO review and proposals for clinical applications

    Get PDF
    Abstract Liquid biopsies collect and analyze tumor components in body fluids, and there is an increasing interest in the investigation of liquid biopsies as a surrogate for tumor tissue in the management of both primary and secondary brain tumors. Herein we critically review available literature on spinal fluid and plasma circulating tumor cells (CTCs) and cell-free tumor (ctDNA) for diagnosis and monitoring of leptomeningeal and parenchymal brain metastases. We discuss technical issues and propose several potential applications of liquid biopsies in different clinical settings (ie, for initial diagnosis, for assessment during treatment, and for guidance of treatment decisions). Last, ongoing clinical studies on CNS metastases that include liquid biopsies are summarized, and recommendations for future clinical studies are provided

    Radiotherapeutic and surgical management for newly diagnosed brain metastasis(es): An American Society for Radiation Oncology evidence-based guideline

    No full text
    Practical Radiation Oncology (2012) xx, xxx-xxx Abstract Purpose: To systematically review the evidence for the radiotherapeutic and surgical management of patients newly diagnosed with intraparenchymal brain metastases. Methods and Materials: Key clinical questions to be addressed in this evidence-based Guideline were identified. Fully published randomized controlled trials dealing with the management of newly diagnosed intraparenchymal brain metastases were searched systematically and reviewed. The U.S. Preventative Services Task Force levels of evidence were used to classify various options of management. Results: The choice of management in patients with newly diagnosed single or multiple brain metastases depends on estimated prognosis and the aims of treatment (survival, local treated lesion control, distant brain control, neurocognitive preservation). Single brain metastasis and good prognosis (expected survival 3 months or more): For a single brain metastasis larger than 3 to 4 cm and amenable to safe complete resection, whole brain radiotherapy (WBRT) and surgery (level 1) should be considered. Another alternative is surgery and radiosurgery/ radiation boost to the resection cavity (level 3). For single metastasis less than 3 to 4 cm, radiosurgery alone or WBRT and radiosurgery or WBRT and surgery (all based on level 1 evidence) should be considered. Another alternative is surgery and radiosurgery or radiation boost to the resection cavity (level 3). For single brain metastasis (less than 3 to 4 cm) that is not resectable or incompletely resected, WBRT and radiosurgery, or radiosurgery alone should be considered (level 1). For nonresectable single brain metastasis (larger than 3 to 4 cm), WBRT should be considered (level 3). Multiple brain metastases and good prognosis (expected survival 3 months or more): For selected patients with multiple brain metastases (all less than 3 to 4 cm), radiosurgery alone, WBRT and radiosurgery, or WBRT alone should be considered, based on level 1 evidence. Safe resection of a brain metastasis or metastases causing significant mass effect and postoperative WBRT may also be considered (level 3). Patients with poor prognosis (expected survival less than 3 months): Patients with either single or multiple brain metastases with poor prognosis should be considered for palliative care with or without WBRT (level 3). It should be recognized, however, that there are limitations in the ability of physicians to accurately predict patient survival. Prognostic systems such as recursive partitioning analysis, and diagnosisspecific graded prognostic assessment may be helpful. Conclusions: Radiotherapeutic intervention (WBRT or radiosurgery) is associated with improved brain control. In selected patients with single brain metastasis, radiosurgery or surgery has been found to improve survival and locally treated metastasis control (compared with WBRT alone)

    Hypofractionated stereotactic radiotherapy of limited brain metastases: a single-centre individualized treatment approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We retrospectively report treatment results of our single-centre experience with hypofractionated stereotactic radiotherapy (hfSRT) of limited brain metastases in primary and recurrence disease situations. Our aim was to find the most effective and safe dose concept.</p> <p>Methods</p> <p>From 04/2006 to 12/2010, 75 patients, with 108 intracranial metastases, were treated with hfSRT. 52 newly diagnosed metastases (48%), without up-front whole brain radiotherapy (WBRT), received hfSRT as a primary treatment. 56 metastases (52%) received a prior WBRT and were treated in this study in a recurrence situation. Main fractionation concepts used for primary hfSRT were 6-7x5 Gy (61.5%) and 5x6 Gy (19.2%), for recurrent hfSRT 7-10x4 Gy (33.9%) and 5-6x5 Gy (33.9%).</p> <p>Results</p> <p>Median overall survival (OS) of all patients summed up to 9.1 months, actuarial 6-and 12-month-OS was 59% and 35%, respectively. Median local brain control (LC) was 11.9 months, median distant brain control (DC) 3.9 months and intracranial control (IC) 3.4 months, respectively. Variables with significant influence on OS were Gross Tumour Volume (GTV) (p = 0.019), the biological eqivalent dose (calculated on a 2 Gy single dose, EQD2, α/β = 10) < and ≥ median of 39 Gy (p = 0.012), extracerebral activity of the primary tumour (p < 0.001) and the steroid uptake during hfSRT (p = 0.03). LC was significantly influenced by the EQD2, ≤ and > 35 Gy (p = 0.004) in both uni- and multivariate Cox regression analysis. Median LC was 14.9 months for EQD2 >35 Gy and 3.4 months for doses ≤35 Gy, respectively. Early treatment related side effects were usually mild. Nevertheless, patients with a EQD2 >35 Gy had higher rates of toxicity (31%) than ≤35 Gy (8.3%, p=0.026).</p> <p>Conclusion</p> <p>Comparing different dose concepts in hfSRT, a cumulative EQD2 of ≥35 Gy seems to be the most effective concept in patients with primary or recurrent limited brain metastases. Despite higher rates of only mild toxicity, this concept represents a safe treatment option.</p

    Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: a phase 1/2 trial.

    No full text
    Immune-mediated anti-tumoral responses, elicited by oncolytic viruses and augmented with checkpoint inhibition, may be an effective treatment approach for glioblastoma. Here in this multicenter phase 1/2 study we evaluated the combination of intratumoral delivery of oncolytic virus DNX-2401 followed by intravenous anti-PD-1 antibody pembrolizumab in recurrent glioblastoma, first in a dose-escalation and then in a dose-expansion phase, in 49 patients. The primary endpoints were overall safety and objective response rate. The primary safety endpoint was met, whereas the primary efficacy endpoint was not met. There were no dose-limiting toxicities, and full dose combined treatment was well tolerated. The objective response rate was 10.4% (90% confidence interval (CI) 4.2-20.7%), which was not statistically greater than the prespecified control rate of 5%. The secondary endpoint of overall survival at 12 months was 52.7% (95% CI 40.1-69.2%), which was statistically greater than the prespecified control rate of 20%. Median overall survival was 12.5 months (10.7-13.5 months). Objective responses led to longer survival (hazard ratio 0.20, 95% CI 0.05-0.87). A total of 56.2% (95% CI 41.1-70.5%) of patients had a clinical benefit defined as stable disease or better. Three patients completed treatment with durable responses and remain alive at 45, 48 and 60 months. Exploratory mutational, gene-expression and immunophenotypic analyses revealed that the balance between immune cell infiltration and expression of checkpoint inhibitors may potentially inform on response to treatment and mechanisms of resistance. Overall, the combination of intratumoral DNX-2401 followed by pembrolizumab was safe with notable survival benefit in select patients (ClinicalTrials.gov registration: NCT02798406)
    corecore