13 research outputs found
Psychoactive Pharmaceuticals Induce Fish Gene Expression Profiles Associated with Human Idiopathic Autism
Idiopathic autism, caused by genetic susceptibility interacting with unknown environmental triggers, has increased dramatically in the past 25 years. Identifying environmental triggers has been difficult due to poorly understood pathophysiology and subjective definitions of autism. The use of antidepressants by pregnant women has been associated with autism. These and other unmetabolized psychoactive pharmaceuticals (UPPs) have also been found in drinking water from surface sources, providing another possible exposure route and raising questions about human health consequences. Here, we examined gene expression patterns of fathead minnows treated with a mixture of three psychoactive pharmaceuticals (fluoxetine, venlafaxine & carbamazepine) in dosages intended to be similar to the highest observed conservative estimates of environmental concentrations. We conducted microarray experiments examining brain tissue of fish exposed to individual pharmaceuticals and a mixture of all three. We used gene-class analysis to test for enrichment of gene sets involved with ten human neurological disorders. Only sets associated with idiopathic autism were unambiguously enriched. We found that UPPs induce autism-like gene expression patterns in fish. Our findings suggest a new potential trigger for idiopathic autism in genetically susceptible individuals involving an overlooked source of environmental contamination
çŻćąäžć·„çšçșłç±łäșæ°§ćééąçČçèĄšćŸäžæ”ćź
Titanium dioxide nanoparticles (TiO2-NPs) are common components used in sunscreens, cosmetics, industrial applications, and many other products. Concerning their high production and widespread applications, characterization and quantification of TiO2-NPs in various matrixes is a topic of great interest for researchers studying their potential environmental and health impacts. Validated and easily applicable analytical tools are required to develop and implement regulatory frameworks and an appropriate risk assessment for engineered nanoparticles (ENPs). Herein, we provide a critical review of the current knowledge available on world-wide production and measured environmental concentrations as well as on available techniques to measure and characterize these ENPs in the environment