8 research outputs found

    The African Cichlid Fish Astatotilapia burtoni Uses Acoustic Communication for Reproduction: Sound Production, Hearing, and Behavioral Significance

    Get PDF
    Sexual reproduction in all animals depends on effective communication between signalers and receivers. Many fish species, especially the African cichlids, are well known for their bright coloration and the importance of visual signaling during courtship and mate choice, but little is known about what role acoustic communication plays during mating and how it contributes to sexual selection in this phenotypically diverse group of vertebrates. Here we examined acoustic communication during reproduction in the social cichlid fish, Astatotilapia burtoni. We characterized the sounds and associated behaviors produced by dominant males during courtship, tested for differences in hearing ability associated with female reproductive state and male social status, and then tested the hypothesis that female mate preference is influenced by male sound production. We show that dominant males produce intentional courtship sounds in close proximity to females, and that sounds are spectrally similar to their hearing abilities. Females were 2–5-fold more sensitive to low frequency sounds in the spectral range of male courtship sounds when they were sexually-receptive compared to during the mouthbrooding parental phase. Hearing thresholds were also negatively correlated with circulating sex-steroid levels in females but positively correlated in males, suggesting a potential role for steroids in reproductive-state auditory plasticity. Behavioral experiments showed that receptive females preferred to affiliate with males that were associated with playback of courtship sounds compared to noise controls, indicating that acoustic information is likely important for female mate choice. These data show for the first time in a Tanganyikan cichlid that acoustic communication is important during reproduction as part of a multimodal signaling repertoire, and that perception of auditory information changes depending on the animal's internal physiological state. Our results highlight the importance of examining non-visual sensory modalities as potential substrates for sexual selection contributing to the incredible phenotypic diversity of African cichlid fishes

    Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice

    Get PDF
    A striking feature of vestibular hair cells is the polarized arrangement of their stereocilia as the basis for their directional sensitivity. In mammals, each of the vestibular end organs is characterized by a distinct distribution of these polarized cells. We utilized the technique of post-fixation transganglionic neuronal tracing with fluorescent lipid soluble dyes in embryonic and postnatal mice to investigate whether these polarity characteristics correlate with the pattern of connections between the endorgans and their central targets; the vestibular nuclei and cerebellum. We found that the cerebellar and brainstem projections develop independently from each other and have a non-overlapping distribution of neurons and afferents from E11.5 on. In addition, we show that the vestibular fibers projecting to the cerebellum originate preferentially from the lateral half of the utricular macula and the medial half of the saccular macula. In contrast, the brainstem vestibular afferents originate primarily from the medial half of the utricular macula and the lateral half of the saccular macula. This indicates that the line of hair cell polarity reversal within the striola region segregates almost mutually exclusive central projections. A possible interpretation of this feature is that this macular organization provides an inhibitory side-loop through the cerebellum to produce synergistic tuning effects in the vestibular nuclei. The canal cristae project to the brainstem vestibular nuclei and cerebellum, but the projection to the vestibulocerebellum originates preferentially from the superior half of each of the cristae. The reason for this pattern is not clear, but it may compensate for unequal activation of crista hair cells or may be an evolutionary atavism reflecting a different polarity organization in ancestral vertebrate ears

    Inbreeding level does not induce female discrimination between sibs and unrelated males in guppies

    Full text link
    Significant empirical evidence has demonstrated the importance of discriminative mate choice as a mechanism to avoid inbreeding. Incestuous mating can be avoided by recognition of kin. The guppy, Poecilia reticulata, is a livebearer with a polygamous mating system and active female choice. Despite potential inbreeding costs in the guppy, Viken et al. (Ethology 112:716&ndash;723, 2006) and Pitcher et al. (Genetica 134:137&ndash;146, 2008) have found that females do not discriminate between sibs and unrelated males. However, populations experiencing different inbreeding histories can have different levels of inbreeding avoidance, and it is possible that the lack of inbreeding avoidance observed in guppies is a consequence of using outbred fish only. Here we tested the preference of female guppies with different inbreeding coefficients, for olfactory cues of males that were either unrelated but had the same inbreeding coefficient, or were related (i.e. brother) with the same inbreeding coefficient. We found no evidence that female guppies preferred unrelated males with the same inbreeding coefficient. Moreover, inbreeding level did not influence female preference for unrelated males, suggesting that inbreeding history in a population has no influence on female discrimination of unrelated males in guppies. <br /

    Sex recognition in surface- and cave-dwelling Atlantic molly females (Poecilia mexicana, Poeciliidae, Teleostei): influence of visual and non-visual cues

    Full text link
    Cave fishes need to rely on non-visual senses, such as the sense of smell or the lateral line to communicate in darkness. In the present study, we investigated sex identification by females of a cave-dwelling livebearing fish, Poecilia mexicana (cave molly), as well as its surfacedwelling relatives. Unlike many other cave fishes, cave mollies still possess functional eyes. Three different modes of presentation of the stimulus fish (a male and an equally sized female) were used: (i) the stimulus fish were presented behind wire-mesh in light, allowing the focal female to perceive multiple cues, (ii) the experiment was carried out under infrared conditions, such that only nonvisual cues could be perceived and (iii) the stimulus fish were presented in light behind transparent Plexiglas, allowing for the use of visual cues only. Females of all populations examined preferred to associate with the stimulus female in at least one of the treatments, but only when visible light was provided, suggesting that far-range sex recognition is limited or even absent in the cave molly under naturally dark conditions
    corecore