15 research outputs found

    Molecular subgroups of medulloblastoma: the current consensus

    Get PDF
    Medulloblastoma, a small blue cell malignancy of the cerebellum, is a major cause of morbidity and mortality in pediatric oncology. Current mechanisms for clinical prognostication and stratification include clinical factors (age, presence of metastases, and extent of resection) as well as histological subgrouping (classic, desmoplastic, and large cell/anaplastic histology). Transcriptional profiling studies of medulloblastoma cohorts from several research groups around the globe have suggested the existence of multiple distinct molecular subgroups that differ in their demographics, transcriptomes, somatic genetic events, and clinical outcomes. Variations in the number, composition, and nature of the subgroups between studies brought about a consensus conference in Boston in the fall of 2010. Discussants at the conference came to a consensus that the evidence supported the existence of four main subgroups of medulloblastoma (Wnt, Shh, Group 3, and Group 4). Participants outlined the demographic, transcriptional, genetic, and clinical differences between the four subgroups. While it is anticipated that the molecular classification of medulloblastoma will continue to evolve and diversify in the future as larger cohorts are studied at greater depth, herein we outline the current consensus nomenclature, and the differences between the medulloblastoma subgroups

    Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas

    Get PDF
    Of nine ependymoma molecular groups detected by DNA methylation profiling, the posterior fossa type A (PFA) is most prevalent. We used DNA methylation profiling to look for further molecular heterogeneity among 675 PFA ependymomas. Two major subgroups, PFA-1 and PFA-2, and nine minor subtypes were discovered. Transcriptome profiling suggested a distinct histogenesis for PFA-1 and PFA-2, but their clinical parameters were similar. In contrast, PFA subtypes differed with respect to age at diagnosis, gender ratio, outcome, and frequencies of genetic alterations. One subtype, PFA-1c, was enriched for 1q gain and had a relatively poor outcome, while patients with PFA-2c ependymomas showed an overall survival at 5 years of >ā€‰90%. Unlike other ependymomas, PFA-2c tumors express high levels of OTX2, a potential biomarker for this ependymoma subtype with a good prognosis. We also discovered recurrent mutations among PFA ependymomas. H3 K27M mutations were present in 4.2%, occurring only in PFA-1 tumors, and missense mutations in an uncharacterized gene, CXorf67, were found in 9.4% of PFA ependymomas, but not in other groups. We detected high levels of wildtype or mutant CXorf67 expression in all PFA subtypes except PFA-1f, which is enriched for H3 K27M mutations. PFA ependymomas are characterized by lack of H3 K27 trimethylation (H3 K27-me3), and we tested the hypothesis that CXorf67 binds to PRC2 and can modulate levels of H3 K27-me3. Immunoprecipitation/mass spectrometry detected EZH2, SUZ12, and EED, core components of the PRC2 complex, bound to CXorf67 in the Daoy cell line, which shows high levels of CXorf67 and no expression of H3 K27-me3. Enforced reduction of CXorf67 in Daoy cells restored H3 K27-me3 levels, while enforced expression of CXorf67 in HEK293T and neural stem cells reduced H3 K27-me3 levels. Our data suggest that heterogeneity among PFA ependymomas could have clinicopathologic utility and that CXorf67 may have a functional role in these tumors

    Distinct disease-risk groups in pediatric supratentorial and posterior fossa ependymomas

    No full text
    PURPOSE: No reliable classification exists for the therapeutic stratification of children with ependymoma, such that disease-risk might be identified and patients treated to ensure a combination of maximal cure rates and minimal adverse therapeutic effects. This study examined associations between clinicopathological and cytogenetic variables and outcome in a trial cohort of children with ependymoma, with the aim of defining a practical scheme for grading this heterogeneous tumor. METHODS: Intracranial ependymomas (n=146) from children treated on the RT1 trial at St. Jude Childrenā€™s Research Hospital were evaluated for the status of multiple pathological features. Interphase FISH (iFISH) defined the status of chromosomes 1q, 6q (LATS1), and 9p21 (CDKN2A). Data relating to these variables were compared with survival data in order to model disease-risk groups. RESULTS: Extent of surgical resection was a significant determinant of outcome. Tumor cell density and mitotic count were associated with outcome among children with posterior fossa ependymomas (n=119). Among pathologic factors, only brain invasion was associated with outcome in children with supratentorial ependymomas (n=27). Gain of 1q was independently associated with outcome and in combination with clinicopathological variables defined a three-tier system of disease-risk for posterior fossa tumors. CONCLUSIONS: Among children developing posterior fossa ependymomas treated with maximal surgical resection and conformal radiotherapy, key clinicopathological variables and chromosome 1q status can be used to define tiers of disease-risk. In contrast, risk factors for pediatric supratentorial tumors are limited to subtotal resection and brain invasion

    Medulloblastoma Down Under 2013: a report from the third annual meeting of the International Medulloblastoma Working Group

    Get PDF
    Medulloblastoma is curable in approximately 70 % of patients. Over the past decade, progress in improving survival using conventional therapies has stalled, resulting in reduced quality of life due to treatment-related side effects, which are a major concern in survivors. The vast amount of genomic and molecular data generated over the last 5-10 years encourages optimism that improved risk stratification and new molecular targets will improve outcomes. It is now clear that medulloblastoma is not a single-disease entity, but instead consists of at least four distinct molecular subgroups: WNT/Wingless, Sonic Hedgehog, Group 3, and Group 4. The Medulloblastoma Down Under 2013 meeting, which convened at Bunker Bay, Australia, brought together 50 leading clinicians and scientists. The 2-day agenda included focused sessions on pathology and molecular stratification, genomics and mouse models, high-throughput drug screening, and clinical trial design. The meeting established a global action plan to translate novel biologic insights and drug targeting into treatment regimens to improve outcomes. A consensus was reached in several key areas, with the most important being that a novel classification scheme for medulloblastoma based on the four molecular subgroups, as well as histopathologic features, should be presented for consideration in the upcoming fifth edition of the World Health Organization's classification of tumours of the central nervous system. Three other notable areas of agreement were as follows: (1) to establish a central repository of annotated mouse models that are readily accessible and freely available to the international research community; (2) to institute common eligibility criteria between the Children's Oncology Group and the International Society of Paediatric Oncology Europe and initiate joint or parallel clinical trials; (3) to share preliminary high-throughput screening data across discovery labs to hasten the development of novel therapeutics. Medulloblastoma Down Under 2013 was an effective forum for meaningful discussion, which resulted in enhancing international collaborative clinical and translational research of this rare disease. This template could be applied to other fields to devise global action plans addressing all aspects of a disease, from improved disease classification, treatment stratification, and drug targeting to superior treatment regimens to be assessed in cooperative international clinical trials

    Phase I trial of weekly MK-0752 in children with refractory central nervous system malignancies: a pediatric brain tumor consortium study.

    No full text
    PURPOSE: Amplification and high-levels of NOTCH ligand expression have been identified in several types of pediatric brain tumors. A phase I trial of weekly MK-0752, an oral inhibitor of gamma-secretase, was conducted in children with recurrent central nervous system (CNS) malignancies to estimate the maximum tolerated dose, dose-limiting toxicities (DLT), pharmacokinetics (PK), and pharmacodynamics of weekly MK-0752. METHODS: MK-0752 was administered once weekly at 1,000 mg/m(2) and 1,400 mg/m(2) using a rolling-6 design. PK analysis was performed during the first course. NOTCH and HES expression was assessed by immunohistochemistry and Western blot. RESULTS: Ten eligible patients were enrolled (median age 8.8 years; range 3.1ā€“19.2) with diagnoses of brain stem glioma (n=3), ependymoma (n=2), anaplastic astrocytoma (n=1), choroid plexus carcinoma (n=2), medulloblastoma (n=1), and primitive neuroectodermal tumor (n=1). Nine were evaluable for toxicity. One DLT of fatigue occurred in the 6 evaluable patients enrolled at 1,000 mg/m(2)/dose. No DLTs were experienced by 3 patients treated at 1,400 mg/m(2)/dose. Non-dose-limiting grade 3 toxicities included lymphopenia, neutropenia, and anemia. Median number of treatment courses was 2 (range 1ā€“10). Two patients continued on therapy for at least 6 months. The median (range) C(max) of MK-0752 was 88.2 Ī¼g/mL (40.6 to 109 Ī¼g/mL) and 60.3 Ī¼g/mL (59.2 to 91.9 Ī¼g/mL) in patients receiving 1,000 mg/m(2)/week and 1,400 mg/m(2)/week, respectively. NOTCH expression was decreased in 6 of 7 patients for whom tissue was available at 24 hours post-MK-0752. CONCLUSION: MK-0752 is well-tolerated and exhibits target inhibition at 1,000 mg/m(2)/week and 1,400 mg/m(2)/week in children with recurrent CNS malignancies
    corecore