759 research outputs found

    Zero-temperature generalized phase diagram of the 4d transition metals under pressure

    Full text link
    We use an accurate implementation of density functional theory (DFT) to calculate the zero-temperature generalized phase diagram of the 4dd series of transition metals from Y to Pd as a function of pressure PP and atomic number ZZ. The implementation used is full-potential linearized augmented plane waves (FP-LAPW), and we employ the exchange-correlation functional recently developed by Wu and Cohen. For each element, we obtain the ground-state energy for several crystal structures over a range of volumes, the energy being converged with respect to all technical parameters to within ∌1\sim 1 meV/atom. The calculated transition pressures for all the elements and all transitions we have found are compared with experiment wherever possible, and we discuss the origin of the significant discrepancies. Agreement with experiment for the zero-temperature equation of state is generally excellent. The generalized phase diagram of the 4dd series shows that the major boundaries slope towards lower ZZ with increasing PP for the early elements, as expected from the pressure induced transfer of electrons from spsp states to dd states, but are almost independent of PP for the later elements. Our results for Mo indicate a transition from bcc to fcc, rather than the bcc-hcp transition expected from spsp-dd transfer.Comment: 28 pages and 10 figures. Submitted to Phys. Rev.

    The Peculiar Motions of Early-Type Galaxies in Two Distant Regions -- V. The Mg-- Relation, Age and Metallicity

    Get PDF
    We have examined the Mg—σ relation for early-type galaxies in the EFAR sample and its dependence on cluster properties. A comprehensive maximum likelihood treatment of the sample selection and measurement errors gives fits to the global Mg—σ relation of Mg bâ€Č=0.131 log σ −0.131 and Mg2=0.257 log σ −0.305. The slope of these relations is 25 per cent steeper than that obtained by most other authors owing to the reduced bias of our fitting method. The intrinsic scatter in the global Mg— σ relation is estimated to be 0.016 mag in Mg bâ€Č and 0.023 mag in Mg2. The Mg— σ relation for cD galaxies has a higher zero-point than for E and S0 galaxies, implying that cDs are older and/or more metal-rich than other early-type galaxies with the same velocity dispersion. We investigate the variation in the zero-point of the Mg— σ relation between clusters. We find that it is consistent with the number of galaxies observed per cluster and the intrinsic scatter between galaxies in the global Mg—σ relation. We find no significant correlation between the Mg—σ zero-point and the cluster velocity dispersion, X-ray luminosity or X-ray temperature over a wide range in cluster mass. These results provide constraints for models of the formation of elliptical galaxies. However, the Mg—σ relation on its own does not place strong limits on systematic errors in Fundamental Plane (FP) distance estimates resulting from stellar population differences between clusters. We compare the intrinsic scatter in the Mg—σ and Fundamental Plane relations with stellar population models in order to constrain the dispersion in ages, metallicities and M/L ratios for early-type galaxies at fixed velocity dispersion. We find that variations in age or metallicity alone cannot explain the measured intrinsic scatter in both Mg— σ and the FP. We derive the joint constraints on the dispersion in age and metallicity implied by the scatter in the Mg—σ and FP relations for a simple Gaussian model. We find upper limits on the dispersions in age and metallicity at fixed velocity dispersion of 32 per cent in ÎŽ t/t and 38 per cent in ÎŽ Z/Z if the variations in age and metallicity are uncorrelated; only strongly anticorrelated variations lead to significantly higher upper limits. The joint distribution of residuals from the Mg— σ and FP relations is only marginally consistent with a model having no correlation between age and metallicity, and is better matched by a model in which age and metallicity variations are moderately anticorrelated (ÎŽ t/t ≈ 40 per cent, ÎŽ Z/Z ≈ 50 per cent and ρ≈ −0.5), with younger galaxies being more metal-rich

    The peculiar motions of early-type galaxies in two distant regions - VII. Peculiar velocities and bulk motions

    Get PDF
    We present peculiar velocities for 84 clusters of galaxies in two large volumes at distances between 6000 and 15000 km/s in the directions of Hercules-Corona Borealis and Perseus-Pisces-Cetus. These velocities are based on Fundamental Plane (FP) distance estimates for early-type galaxies in each cluster. We fit the FP using a maximum likelihood algorithm which accounts for both selection effects and measurement errors, and yields FP parameters with smaller bias and variance than other fitting procedures. We find a best-fit FP with coefficients consistent with the best existing determinations. We measure the bulk motions of the sample volumes using the 50 clusters with the best-determined peculiar velocities. We find the bulk motions in both regions are small, and consistent with zero at about the 5% level. The EFAR results are in agreement with the small bulk motions found by Dale et al. (1999) on similar scales, but are inconsistent with pure dipole motions having the large amplitudes found by Lauer & Postman (1994) and Hudson et al. (1999). The alignment of the EFAR sample with the Lauer & Postman dipole produces a strong rejection of a large-amplitude bulk motion in that direction, but the rejection of the Hudson et al. result is less certain because their dipole lies at a large angle to the main axis of the EFAR sample. We find the bulk motion of our sample is consistent with most cosmological models that approximately reproduce the shape and normalisation of the observed galaxy power spectrum. We conclude that existing measurements of large-scale bulk motions provide no significant evidence against standard models for the formation of structure.Comment: to appear in MNRAS, 27 pages, EFAR paper

    Combined local-density and dynamical mean field theory calculations for the compressed lanthanides Ce, Pr, and Nd

    Full text link
    This paper reports calculations for compressed Ce (4f^1), Pr (4f^2), and Nd (4f^3) using a combination of the local-density approximation (LDA) and dynamical mean field theory (DMFT), or LDA+DMFT. The 4f moment, spectra, and the total energy among other properties are examined as functions of volume and atomic number for an assumed face-centered cubic (fcc) structure.Comment: 15 pages, 9 figure

    Calibration of Plastic Phoswich Detectors for Charged Particle Detection

    Full text link
    The response of an array of plastic phoswich detectors to ions of 1≀Z≀181\le Z\le 18 has been measured from E/AE/A=12 to 72 MeV. The detector response has been parameterized by a three parameter fit which includes both quenching and high energy delta-ray effects. The fits have a mean variation of ≀4%\le 4\% with respect to the data.Comment: 17 pages, 5 figure

    Condensation Energy and Spectral Functions in High Temperature Superconductors

    Full text link
    If high temperature cuprate superconductivity is due to electronic correlations, then the energy difference between the normal and superconducting states can be expressed in terms of the occupied part of the single particle spectral function. The latter can, in principle, be determined from angle resolved photoemission (ARPES) data. As a consequence, the energy gain driving the development of the superconducting state is intimately related to the dramatic changes in the photoemission lineshape when going below Tc. These points are illustrated in the context of the "mode" model used to fit ARPES data in the normal and superconducting states, where the question of kinetic energy versus potential energy driven superconductivity is explored in detail. We use our findings to comment on the relation of ARPES data to the condensation energy, and to various other experimental data. In particular, our results suggest that the nature of the superconducting transition is strongly related to how anomalous (non Fermi liquid like) the normal state spectral function is, and as such, is dependent upon the doping level.Comment: 10 pages, revtex, 4 encapsulated postscript figure
    • 

    corecore