5 research outputs found

    Chemical stability study of vitamins thiamine, riboflavin, pyridoxine and ascorbic acid in parenteral nutrition for neonatal use

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this work was to study the vitamins B<sub>1</sub>, B<sub>2</sub>, B<sub>6 </sub>and C stability in a pediatric formulation containing high amounts of calcium in the presence of organic phosphate, amino acids, glucose, sodium chloride, magnesium sulfate, pediatric vitamins and trace elements under different conditions using developed and validated analytical methods.</p> <p>Methods</p> <p>The study was carried out during 72 h with formulations packaged in recommended storage temperature (4°C) and 25°C, with and without photoprotection.</p> <p>Results</p> <p>The results showed that the methodologies used for assessing the chemical stability of vitamins B<sub>1</sub>, B<sub>2</sub>, B<sub>6 </sub>and C in the formulation were selective, linear, precise and accurate. The vitamins could be considered stable in the formulation during the three days of study if stored at 4°C. When stored at 25°C vitamin C presented instability after 48 h.</p> <p>Conclusion</p> <p>The pediatric formulation containing high amount of calcium in the presence of organic phosphate, amino acids, glucose, sodium chloride, magnesium sulphate, pediatric vitamins and trace elements packaged in bag-type trilaminate presented a shelf life of the 72 h, when maintained under refrigeration, between 2°C and 8°C. This shelf life was measured considering the vitamins studied. Further studies are needed including all the vitamins present in this formulation.</p

    Influence of the relative composition of trace elements and vitamins in physicochemical stability of total parenteral nutrition formulations for neonatal use

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>The present study aimed to evaluate the influence of the relative composition of trace elements and vitamins in physicochemical stability of neonatal parenteral nutrition.</p> <p>Material and methods</p> <p>Three formulations for neonatal administration were selected; the main variable was the presence of trace elements and vitamins. The analyses where carried out immediately after preparation and at 24 h, 48 h, 72 h and 7 days after preparation. Three methods were selected to determine globule size: light obscuration, dynamic light scattering and optical microscopy. Complementary evaluation including visual inspection, determination of pH and osmolarity, peroxide levels and measurements of zeta potential were also performed.</p> <p>Results</p> <p>There was an observable alteration in color and phase separation in the PN stored at 25°C and 40°C. Neither globule size pattern, nor any other physicochemical characteristic evaluated appeared to be considerably altered in any of the analyzed formulations even after 7 days of storage at 5°C. Globule size in all the PN studied was consistent with the established limit, below 500 nm by DLS measurement, and PFAT<sub>5</sub> was below 0.05% under all storage temperatures.</p> <p>Conclusion</p> <p>Concomitant presence of trace elements and vitamins in the same neonatal formulation did not alter the evaluated aspects of stability.</p

    Retention Characteristics of Peptides in RP-LC: Peptide Retention Prediction

    No full text

    A «Repertoire for Repertoire» Hypothesis: Repertoires of Type Three Effectors are Candidate Determinants of Host Specificity in Xanthomonas

    No full text
    corecore