41 research outputs found

    Discrete cilia modelling with singularity distributions

    Get PDF
    We discuss in detail techniques for modelling flows due to finite and infinite arrays of beating cilia. An efficient technique, based on concepts from previous ‘singularity models’ is described, that is accurate in both near and far-fields. Cilia are modelled as curved slender ellipsoidal bodies by distributing Stokeslet and potential source dipole singularities along their centrelines, leading to an integral equation that can be solved using a simple and efficient discretisation. The computed velocity on the cilium surface is found to compare favourably with the boundary condition. We then present results for two topics of current interest in biology. 1) We present the first theoretical results showing the mechanism by which rotating embryonic nodal cilia produce a leftward flow by a ‘posterior tilt,’ and track particle motion in an array of three simulated nodal cilia. We find that, contrary to recent suggestions, there is no continuous layer of negative fluid transport close to the ciliated boundary. The mean leftward particle transport is found to be just over 1 ÎŒm/s, within experimentally measured ranges. We also discuss the accuracy of models that represent the action of cilia by steady rotlet arrays, in particular, confirming the importance of image systems in the boundary in establishing the far-field fluid transport. Future modelling may lead to understanding of the mechanisms by which morphogen gradients or mechanosensing cilia convert a directional flow to asymmetric gene expression. 2) We develop a more complex and detailed model of flow patterns in the periciliary layer of the airway surface liquid. Our results confirm that shear flow of the mucous layer drives a significant volume of periciliary liquid in the direction of mucus transport even during the recovery stroke of the cilia. Finally, we discuss the advantages and disadvantages of the singularity technique and outline future theoretical and experimental developments required to apply this technique to various other biological problems, particularly in the reproductive system

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Plasma Sources in Planetary Magnetospheres: Mercury

    Full text link

    Population structure and resistance to mefenoxam of Phytophthora capsici in New York State

    No full text
    In 2006, 2007, and 2008, we sampled 257 isolates of Phytophthora capsici from vegetables at 22 sites in four regions of New York, to determine variation in mefenoxam resistance and population genetic structure. Isolates were assayed for mefenoxam resistance and genotyped for mating type and five microsatellite loci. We found mefenoxam-resistant isolates at a high frequency in the Capital District and Long Island, but none were found in western New York or central New York. Both A1 and A2 mating types were found at 12 of the 22 sites, and we detected 126 distinct multilocus genotypes, only nine of which were found at more than one site. Significant differentiation (FST) was found in more than 98% of the pairwise comparisons between sites; approximately 24 and 16% of the variation in the population was attributed to differences among regions and sites, respectively. These results indicate that P. capsici in New York is highly diverse, but gene flow among regions and fields is restricted. Therefore, each field needs to be considered an independent population, and efforts to prevent movement of inoculum among fields need to be further emphasized to prevent the spread of this pathogen. © 2010 The American Phytopathological Society.Articl
    corecore